

# **EntréPad AES2501A FINGERPRINT SENSOR**

# Product Specification For Universal Serial Bus Applications





AuthenTec welcomes your suggestions. We try to make our publications useful, interesting, and informative, and we hope you will take the time to help us improve them. Please send any comments or suggestions by mail or e-mail.

#### **Disclaimer of Warranty**

AUTHENTEC SOFTWARE, INCLUDING INSTRUCTIONS FOR ITS USE, IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. AUTHENTEC FURTHER DISCLAIMS ALL IMPLIED WARRANTIES INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR OF FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK ARISING OUT OF THE USE OR PERFORMANCE OF THE SOFTWARE AND DOCUMENTATION REMAINS WITH YOU.

IN NO EVENT SHALL AUTHENTEC, ITS AUTHORS, OR ANYONE ELSE INVOLVED IN THE CREATION, PRODUCTION, OR DELIVERY OF THE SOFTWARE BE LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGE FOR LOSS OF BUSINESS PROFITS, BUSINESSINTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OF OR INABILITY TO USE THE SOFTWARE OR DOCUMENTATION, EVEN IF AUTHENTEC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME STATES OR COUNTRIES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES, THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

#### **U.S. Government Restricted Rights**

AuthenTec software and documentation are provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or subparagraph (c)(1) and (2) of the Commercial Computer Software – Restricted Rights 48 CFR 52.227-19, as applicable. Manufacturer is AuthenTec, Inc.; Melbourne, Florida 32901-2719.This Agreement is governed by the laws of the State of Florida.

AuthenTec, Inc. Post Office Box 2719 Melbourne, Florida 32902-2719 321-308-1300 www.authentec.com apps@authentec.com

AuthenTec, FingerLoc, EntréPad, Aware, AES2501A, AES3550, AES4000, AF-S2, ISX, TruePrint, the AuthenTec colophons and logotypes, and the phrase "Personal Security for the Real World" are trademarks of AuthenTec, Inc. Microsoft and Windows 98 are registered trademarks of Microsoft Corp. Microwire™ is a trademark of National Semiconductor Corp. SPI™ is a registered trademark of Motorola. All other trademarks are the property of their respective owners.

#### Product Specification for the AES2501A Fingerprint Sensor

Copyright ©2004 by AuthenTec, Inc. No part of this publication may be reproduced in any form or by any means without prior written permission. Printed in the United States of America.



2317 Rev 1.1 (17NOV04) AuthenTec Confidential Information



# **Table of Contents**

| 1. | IN                              | TRODUCING THE ENTRÉPAD AES2501A SLIDE SENSOR                                                                          | 6                            |
|----|---------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------|
|    | 1.1<br>1.2<br>1.3<br>1.4<br>1.5 | TRUEPRINT TECHNOLOGY IS<br>FEATURE SUMMARY<br>CONVENTIONS<br>OPERATIONAL DESCRIPTION<br>NAVIGATION USING THE AES2501A | 6<br>7<br>7<br>8             |
| 2. | DC                              | C ELECTRICAL CHARACTERISTICS                                                                                          | 9                            |
|    | 2.1<br>2.2<br>2.3               | Absolute Maximum Ratings<br>Recommended Operating Conditions<br>DC Characteristics @ Recommended Operating Conditions | 9<br>9<br>10                 |
| 3. | SE                              | ENSOR OPERATION                                                                                                       | 11                           |
|    | 3.1<br>3.2                      | OPERATION DESCRIPTION<br>INTERNAL CHIP BLOCK DIAGRAM                                                                  | 11<br>12                     |
| 4. | PA                              | ACKAGING & PIN DEFINITIONS                                                                                            | 13                           |
|    | 4.1<br>4.2<br><i>4.2</i><br>4.3 | PACKAGING INFORMATION<br>PIN LIST<br>2.1 Pin Type and Activity Definitions<br>PIN DESCRIPTIONS                        | 13<br>15<br><i> 16</i><br>17 |
| 4  | 1.4                             | CLOCK SELECT CONTROL                                                                                                  | 18                           |
|    | 4.4<br>1.5                      | 4.1 Clock Specification                                                                                               | 18<br>20                     |
|    | 4.5                             | 5.1 Image Scan Timing                                                                                                 | 20                           |
|    | 4.5                             | 5.2 USB Interface                                                                                                     | 20                           |
| ~  | 4.0                             |                                                                                                                       | 20                           |
| э. | 31<br>- 4                       |                                                                                                                       | 21                           |
| ;  | 5.1<br>5.2                      | INTERFACE SELECT CONTROL                                                                                              | 21<br>22                     |
| į  | 5.3                             | RESET                                                                                                                 | 24                           |
| 6. | SC                              | OFTWARE INTERFACE DETAILS                                                                                             | 25                           |
| (  | 5.1                             | REGISTER MAP                                                                                                          | 25                           |
|    | 6                               | 6.1.1.1 Control Register 1 (CTRL1) (80h)                                                                              | 27                           |
|    | 6                               | 6.1.1.2 Control Register 2 (CTRL2) (81h)                                                                              | 28                           |
|    | e                               | 6.1.1.4 Detect Control (DETCTRL) (83h)                                                                                |                              |
|    | 6                               | 6.1.1.5 Navigation Correlation Range (NAVCORRNGE) (84h)                                                               | 31                           |
|    | 6                               | 6.1.1.6 Navigation Finger Detect Threshold (NAVFDTHRSH) (85h)                                                         | 31                           |
|    | 6                               | 6.1.1.8 Detect Frequency (DETFREQ) (87h)                                                                              | 32                           |
|    | 6                               | 6.1.1.9 Column Scan Rate (COLSCAŃ) (88h)                                                                              | 34                           |
|    | 6                               | 6.1.1.10 Measure Drive (VDCTRLMD) (89h)                                                                               | 35                           |
|    | e<br>e                          | 6.1.1.12 Demod Phase 1(DEMODPHASE1) (8Ch)                                                                             | 30<br>37                     |
|    | e                               | 6.1.1.13 Channel Gain (CHANGAIN) (8Eh)                                                                                | 38                           |
|    | 6                               | 6.1.1.14 Channel Bias (CHANBIAS) (8Fh)                                                                                | 39                           |
|    | e<br>e                          | 0.1.1.15 Carrier Null (CARKNULL) (901)<br>6 1 1 16 A/D Reference High (ADREFHI) (91h)                                 | 40<br>41                     |
|    | 6                               | 6.1.1.17 A/D Reference Low (ADREFLO) (92h)                                                                            |                              |
|    |                                 | 6 1 1 18 Start Column (STRTCOL) (95h)                                                                                 | 40                           |
|    | ť                               |                                                                                                                       | 42                           |





7.

8.

9.

|    | 6.1.1.20   | Data Format (DATFMT) (97h)                        | 43       |
|----|------------|---------------------------------------------------|----------|
|    | 6.1.1.21   | Image Data Control (IMAGCTRL) (98h)               |          |
|    | 6.1.1.22   | GPIO Data (GPIODATA) (99h)                        | 45       |
|    | 6.1.1.23   | Sensor Status (STAT) (9Ah)                        |          |
|    | 6.1.1.24   | Challenge Word 1 (CHWORD1) (9Bh)                  | 47       |
|    | 6.1.1.25   | Challenge Word 2 (CHWORD2) (9Ch)                  | 47       |
|    | 6.1.1.26   | Challenge Word 3 (CHWORD3) (9Dh)                  | 48       |
|    | 6.1.1.27   | Challenge Word 4 (CHWORD4) (9Eh)                  |          |
|    | 6.1.1.28   | Challenge Word 5 (CHWORD5) (9Fh)                  |          |
|    | 6.1.1.29   | Test Register 1 (TREG1) (A1h)                     |          |
|    | 6.1.1.30   | FD Threshold (FDTHRESHOLD) (A8h)                  | 50       |
|    | 6.1.1.31   | Miscellaneous Control (MISCCTRL) (ACh)            | 51       |
|    | 6.1.1.32   | Single Reg. Address (SREGADDR) (ADh)              |          |
|    | 6.1.1.33   | FDRV X HI (FDRVXHI) (AEh)                         |          |
|    | 6.1.1.34   | FDRV X LO (FDRVXLO) (AFh)                         |          |
|    | 6.1.1.35   | Watchdog Control (WDCtrl) (B0h)                   |          |
|    | 6.1.1.36   | Misc. Image Control/GPIO Disable(MISCICTRL) (B3h) |          |
|    | 6.1.1.37   | SOF Timestamp/FreeRun[13:7] (SOFTIMEHIGH) (BAh)   |          |
|    | 6.1.1.38   | SOF Timestamp/FreeRun[6:0] (SOFTIMELOW) (BBh)     |          |
|    | 6.1.1.39   | EOF Timestamp[13:7] (EOFTIMEHIGH) (BCh)           |          |
|    | 6.1.1.40   | EOF Timestamp[6:0] (EOFTIMELOW) (BDn)             | 57       |
| 7. | DATA FOR   | MATS                                              | 58       |
| 7  | 7.1 OVERVI | FW                                                |          |
| -  | 7.1.1 Re   | aisters Message Format                            |          |
|    | 712 Im     | age Data Format – Grev Scale 500 ppi              |          |
|    | 713 Im     | age Data Format – 250 ppi                         | 60 60    |
|    | 711 Im     | age Data Format – Monochrome                      |          |
|    | 715 Uid    | etogram Massaga Earmat                            | 01<br>62 |
|    |            | stugran invisionage i Unitidi                     |          |
|    | 7.1.0 AU   | Ineniluation word Message Format                  | 03       |
| 3. | PART NUM   | BERING SCHEME                                     | 64       |
| _  |            |                                                   |          |
| J. | REVISION   | AISTORY                                           | 65       |





# LIST OF FIGURES

| Figure 1-1 Row Numbering              | 7                      | 7 |
|---------------------------------------|------------------------|---|
| Figure 2-1 Absolute Maximum Ratir     | gsg                    | ) |
| Figure 2-2 Recommended Operatin       | g Conditions           | ) |
| Figure 2-3 DC Characteristics         | -<br>10                | ) |
| Figure 3-1 AES2501A Functional Dia    | agram11                | L |
| Figure 3-2 Internal Chip Block Diag   | ām12                   | 2 |
| Figure 4-1 Pin List by Interface      |                        | 3 |
| Figure 4-2 AES2501A Active Pin Fu     | nctional Description17 | 7 |
| Figure 4-3 External Clock Specifica   | ions                   | ) |
| Figure 5-2 SIO Pin Definitions for th | e USB Interface21      | L |

# LIST OF TABLES

| Table 4-1 | CLKSEL[2:0] Decode                                                  | 18 |
|-----------|---------------------------------------------------------------------|----|
| Table 5-2 | Device Descriptor                                                   | 22 |
| Table 5-3 | Default Configuration Descriptor                                    | 23 |
| Table 5-4 | Default Interface 0, Alternate Setting 0 Descriptor                 | 23 |
| Table 5-5 | Default Interface 0, Alternate Setting 0, Bulk Endpoint Descriptors | 23 |
| Table 5-6 | String 0 Descriptor                                                 | 24 |
| Table 6-1 | Registers Summary                                                   | 26 |
| Table 7-1 | Command Byte Definition                                             | 58 |
| Table 7-2 | Gray Scale Message Format                                           | 59 |
| Table 7-3 | 4 Bit 250 ppi Gray Scale Message Format                             | 60 |
| Table 7-4 | Monochrome Packed Message Format                                    | 61 |
| Table 7-5 | Histogram Message Format                                            | 62 |
| Table 7-6 | Authentication Word Message Format                                  | 63 |
|           |                                                                     |    |



AuthenTec, Inc. Personal Security for the Real World\*\*

# 1. Introducing the EntréPad AES2501A Slide Sensor...

..., the latest, lowest cost fingerprint sensor IC for PC Applications. AuthenTec has adapted its patented, award winning TruePrint Technology to read fingerprints while the finger is pulled across the AES2501A's rectangular surface. In this manner, the fingerprint images are acquired AND the sensor is substantially reduced in size.

The AES2501A combines silicon-based image slice capture with proprietary sensor control and image segment matching algorithms to provide the best quality lowest cost biometric authentication solution available.

# 1.1 TruePrint Technology is...

...AuthenTec's unique patented fingerprint reading technology. During imaging, a small signal is generated between the IC and the finger's living tissue layer. 3072 individual sensing elements in the slide sensor matrix form a planar antenna array that receives this signal, creating a digital pattern that accurately reproduces the fingerprint's underlying structure.

A powerful utility contained within TruePrint Technology<sup>™</sup> is Dynamic Optimization<sup>™</sup>. This tool analyzes each image, controlling up to 15 parameters real-time to optimize the fingerprint image slices, regardless of unusual skin conditions or surface contamination. This functionality is built right into the sensor hardware or you can perform these functions in software for total control and upgrade-ability.

# **1.2 Feature Summary**

- Patented TruePrint Technology for best Ability To Acquire (ATA)
- High Definition 192 X 16 TruePrint Technology Based Pixel Array
  - o 500 pixels per inch (ppi) native
  - o 9.75mm X 0.81mm array area
- ✓ Compact 48 Ball Grid Array (BGA) Package
  - o 13.8mm X 5mm X 1.3mm
- ✓ USB Operating Voltage Range
  - 3.0V to 3.6V single supply
- ✓ 0°C to +70°C operating temperature range
- ✓ Easy to Integrate USB 2.0 Full Speed
- Operation with Crystal, Resonator, or with external clock input
- ✓ Ultra-hard scratch resistance surface coating
  - $\circ$  > 1 Million rubs w/o degradation
- ✓ IEC 61000-4-2 Level 4 ESD Capability (+/- 15KV)
- ✓ Built-in low power Finger Detection w/system interrupt capability
- ✓ Multiple battery-friendly operating modes @ 3.3V
  - Imaging @ <40mA typ.</li>
  - 5-way Navigation @ < 3mA typ.





# 1.3 Conventions

For vectors (groups of bits), ordering will always be from MSB to LSB (e.g. Pixel\_Data[63:0] where bit 63 is the MSB and bit 0 is the LSB). When vectors that span multiple bytes are transmitted, the lower byte (bits [7:0]) is transmitted first. This applies to pixel data and the authentication

word returned after each imaging frame.

Numbers followed by a 'b' are shown in binary. Numbers followed by an 'h' are in hexadecimal.

# **1.4 Operational Description**

The Sensor begins operation in the 'idle' state after a reset. In the idle state, array power is turned off and clocking is disabled (except to support interface activity). It is then necessary for the system SW to program the sensor for the desired operation (Imaging or Navigation). After this setup, the requested operation is enabled by setting the Op Enable bit (located in Register 80h:D2). If Imaging is selected, the Sensor enters finger detect mode checks for a finger present at a rate programmed by the Finger Detect Rate setting. The default reset value sets the detect period to ~62 ms.

After finger detection, the sensor will begin the programmed operation and will enter Imaging mode until the finger is removed. Once the finger is removed, the sensor returns to the Low Power Finger Detect mode. When no activity is detected on the system interface bus for approximately 200uS, power is reduced by disabling the internal clocks and the array power is once again turned off.



Figure 1-1 Row Numbering





The array consists of 192 columns of 16 pixels each. During imaging, the columns are powered up and the signals from each of the 16 pixels/column are sampled, digitized and returned to the host computer over the selected interface sequentially in order on a per-column basis. The sensor has the capability to utilize only the center 128 columns during imaging mode to facilitate higher finger sliding speeds. During fingerprint enrollment, a 192 pixel wide template is created. Then, optionally, either a 192 pixel wide or 128 pixel wide verify can be performed. This mode is entirely controlled via software using sensor register settings for start and stop columns.

If the finger detect is not active when it is rechecked at the end of a scan, the array is powered down and the sensor reverts back to checking for a finger at the programmed detect rate.

AuthenTec has application notes to support the integration of the AES2501A for all available interface options. Contact AuthenTec for availability.

# 1.5 Navigation Using the AES2501A

The navigation use model is a button replacement system. The typical Left / Right / Up / Down button functionality can be easily emulated on the sensor by statically touching the sensor to indicate desired left or right direction and by sliding the finger at normal finger speeds in the up or down direction to indicate up or down.

When operations are enabled (via the OP ENABLE bit as described previously) and Navigation mode is selected, the sensor will provide constant, periodic indications of direction and finger presence by sending a 2-byte message to the selected interface.

After NAV mode is enabled, the sensor takes 10 samples of the center column approximately every 100 us. After producing an output message, the sensor then enters a low power state for a programmable amount of time, and then repeats the above sequence. Output generation rates are programmable and range from 100 Hz down to 26 Hz.





# 2.1 Absolute Maximum Ratings

An absolute maximum rating is the maximum value guaranteed by the AuthenTec. The use of a product in violation of these ratings can result in significant loss of device reliability or cause damage to the IC.

| Symbol                 | Parameter                                                                                                                     | Min.  | Max.                 | Units |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------|----------------------|-------|
| V <sub>DD</sub>        | Supply Voltage                                                                                                                | -0.5  | 4.3                  | V     |
| VI                     | Input Voltage                                                                                                                 | -0.5  | V <sub>DD</sub> +0.5 | V     |
| Vo                     | Output Voltage                                                                                                                | -0.5  | V <sub>DD</sub> +0.5 | V     |
| I <sub>IK</sub>        | Input Clamp Current<br>VI < V <sub>SS</sub> of VI > V <sub>DD</sub>                                                           |       | ±20                  | mA    |
| Ι <sub>ΟΚ</sub>        | Output Clamp Current $V_O < V_{SS}$ of $V_O > V_{DD}$                                                                         |       | ±20                  | mA    |
| T <sub>STG</sub>       | Storage Temperature                                                                                                           | -65   | 150                  | °C    |
| Latch-Up               | Latch-Up Immunity<br>JEDEC JESD78                                                                                             | ±100  |                      | mA    |
| T <sub>SOL</sub>       | Soldering Temperature                                                                                                         |       | +240                 | °C    |
| ESD <sub>PIN</sub>     | Pin-level ESD Immunity<br>JESD22 Method A114-B                                                                                | -2000 | +2000                | V     |
| ESD <sub>PACKAGE</sub> | Package-level ESD<br>Immunity<br>IEC61000-4-2 Level 4 Air<br>Discharge method using<br>AuthenTec approved<br>reference design | -15   | +15                  | ΚV    |

# Figure 2-1 Absolute Maximum Ratings

# 2.2 Recommended Operating Conditions

| Symbol               | Parameter                        | Min.          | Тур | Max.            | Units |
|----------------------|----------------------------------|---------------|-----|-----------------|-------|
| V <sub>DD</sub>      | Supply Voltage                   | 3.0           | 3.3 | 3.6             | V     |
| V <sub>DDACp-p</sub> | Power Supply Ripple              | -50           | 0   | +50             | mV    |
| VI                   | Input Voltage                    | 0             |     | $V_{DD}$        | V     |
| Vo                   | Output Voltage                   | 0             |     | $V_{DD}$        | V     |
| VIH                  | High Level Input Voltage         | $70\% V_{DD}$ |     | V <sub>DD</sub> | V     |
| VIL                  | Low Level Input Voltage          | 0             |     | $30\% V_{DD}$   | V     |
| tt                   | Input Transition (Rise and Fall) | 0             |     | 3               | ns    |
|                      | Time                             |               |     |                 |       |
| T <sub>A</sub>       | Ambient operating temperature    | 0             |     | 70*             | °C    |

Figure 2-2 Recommended Operating Conditions





## \*Warning

The AES2501A remains fully operational at temperatures that are high enough to be uncomfortable for the user.

For reasons of safety and protection, AuthenTec reference designs include circuitry that serves to manage the junction temperature by controlling the supply current. If the hardware developer elects not to use the AuthenTec-provided control circuit design, it will then be essential that an equivalent design be developed and implemented.

# 2.3 DC Characteristics @ Recommended Operating Conditions

| Symbol           | Parameter                    | Conditions   | Min.              | Тур | Max. | Units |
|------------------|------------------------------|--------------|-------------------|-----|------|-------|
| V <sub>OH</sub>  | High Level Output Voltage    | IOH=2mA      | V <sub>dd</sub> - |     |      | V     |
|                  |                              |              | 0.3               |     |      |       |
| V <sub>OL</sub>  | Low Level Output Voltage     | IOL=2mA      |                   |     | 0.3  | V     |
| ۱ <sub>۱L</sub>  | Low Level Input Current      | VI=VIL(min.) |                   |     | ±1   | μA    |
| I <sub>IH</sub>  | High Level Input Current     | VI=VIH(max.  |                   |     | ±1   | μA    |
| l <sub>oz</sub>  | High Impedance State Output  |              |                   |     | ±20  | μA    |
|                  | Current                      |              |                   |     |      |       |
| USB Inte         | erface Supply Currents       |              |                   |     |      |       |
| I <sub>DDQ</sub> | Supply Current               | Vdd=3.3V     |                   | 45  |      | mA    |
|                  | Imaging mode; USB (peak)     |              |                   |     |      |       |
| I <sub>DDQ</sub> | Supply Current               | Vdd=3.3V     |                   | 3   |      | mA    |
|                  | Navigation or Finger Detect; |              |                   |     |      |       |
|                  | USB                          |              |                   |     |      |       |
| I <sub>DDQ</sub> | Supply Current               | Vdd=3.3V     |                   | 350 |      | uA    |
|                  | Suspend Current; USB         |              |                   |     |      |       |

Unless otherwise specified,  $V_1 = V_{DD}$  or  $V_{SS}$ ,  $T_{Ambient} = 25^{\circ}C$ 

## Figure 2-3 DC Characteristics

All I<sub>DDQ</sub> Currents measured RMS using standard AuthenTec software and drivers. Use of other software or customized register settings may effect actual power consumption.



# 3. SENSOR OPERATION

# 3.1 **Operation Description**

During an imaging event, the RF TruePrint Signal is conducted via the Drive Ring to the users' finger. The TruePrint Signal is them conducted through and modulated by the "live layer" of the finger where the true fingerprint originates. The imaging array (center strip region of the chip) measures the TruePrint signal; the strength of which corresponds to either a ridge or valley region.

The image array of the AES2501A sensor is composed of 16x192 pixels. The array is scanned similarly to a sub-array in AuthenTec's touch sensors. During the imaging process, 16 pixels in a column are powered up, sampled, and converted to 4-bit or 2-bit values. The high and low reference voltages for the ADC are programmable via 7-bit DACs.



Figure 3-1 AES2501A Functional Diagram

The sensing element of each pixel is an RF sense-amplifier, which picks up the TruePrint (high frequency AC) signal (125 KHz – 2MHz) that is applied to the finger via the Finger Drive Ring, located prominently on the sensor surface which fully encloses the pixel array. The pixel sense amps receive, amplify, and buffer the signal.

Each pixel output is then converted into a level corresponding to the strength of the received signal. Stronger signals are picked up from ridges than valleys. This output is converted by an A/D converter whose endpoints are adjustable via the Reference High and Reference Low voltages.





# 3.2 Internal Chip Block Diagram

The following diagram shows a top-level block diagram of the Sensor IC.



Figure 3-2 Internal Chip Block Diagram





# 4.1 Packaging Information

The AES2501A sensor is housed in a plastic 48 Ball Grid Array package. The most current PDF version of this package drawing can always be viewed, printed, or downloaded at:

http://www.authentec.com/products/docs/AES2501A\_48\_BGA\_Pkg.pdf







The package drawing shows both the mechanical dimensions of the package as well as recommended housing "keep-out" areas and angles of approach to and from the slide surface. For additional information, contact AuthenTec Applications Engineering for more details.

The Pin 1 indicator is a gold triangle located in the corner of the package adjacent to pin one.

Post-assembly top-side inspection can be performed visually using the fact that the drive bars are of different thickness (One Bar is 0.84mm, the other is 0.70mm). When the thicker drive bar is located at the top of the device from the inspection viewpoint, pin one is located top left from the same perspective.

The "X-Ray" view below shows the perspective described.



Pin 1 Triangle on the bottom, Thicker Drive Bar on the top.





Pin assignments and pin function descriptions of the AES2501A sensor are given below. Shared pin definitions for SIO[8:0] are selected by the state of the IOSEL[1:0] pins. Refer to section 5.1 for the interface-specific SIO definitions. The following pin lists match AuthenTec certified reference designs. Certain pin functions will be required to change for other implementations.

| Pin        | Туре     | <b>Digital Activity</b> | Signal      |
|------------|----------|-------------------------|-------------|
|            |          |                         | Name (USB)  |
| A1         | Passive  | Static                  | VREF        |
| A2         | Passive  | Static                  | CT2         |
| A3         | Passive  | Static                  | CT1         |
| A4         | Output   | Active                  | FINGERDRIVE |
| A5         | Input    | Static                  | RESET*      |
| A6         | Reserved |                         | N/C         |
| A7         | Reserved |                         | N/C         |
| A8         | Power    |                         | VDD         |
| A9         | Power    |                         | GND         |
| A10        | Passive  | Static                  | PLL_FILTER  |
| A11        | Input    | Active                  | SYS_CLK     |
| A12        | Output   | Active                  | DRIVE_RING  |
| B1         | Input    | Static                  | CLKSEL2     |
| B2         | Power    |                         | GND         |
| <b>B</b> 3 | Power    |                         | VDD         |
| B4         | Input    | Static                  | VDDL        |
| B5         | Input    | Static                  | VDDL        |
| <b>B6</b>  | Input    | Static                  | CLKSEL1     |
| B7         | I/O      | Active                  | SUSPEND     |
| <b>B8</b>  | I/O      | Active                  | USB_OE*     |
| <b>B9</b>  | I/O      | Active                  | D+          |
| B10        | I/O      | Active                  | D-          |
| B11        | I/O      | Active                  | PID3        |
| B12        | I/O      | Active                  | PID2        |
| C1         | Reserved |                         | N/C         |
| C2         | Power    |                         | VSS         |
| C3         | Power    |                         | VDDA        |
| C4         | Input    | Static                  | VSSL        |
| C5         | Input    | Static                  | CLKSEL0     |
| C6         | Input    | Static                  | VSSL        |
| C7         | I/O      | Active                  | PID0        |
| C8         | I/O      | Active                  | PID1        |
| C9         | I/O      | Active                  | ENUM        |
| C10        | Output   | Active                  | VDDA_ON*    |
| C11        | Power    |                         | VSS         |
| C12        | Power    |                         | VDDA        |
| D1         | Output   | Active                  | DRIVE_RING  |
| D2         | Reserved |                         | N/C         |
| D3         | Reserved |                         | N/C         |
| D4         | Reserved |                         | N/C         |





| Pin | Туре     | Digital Activity | Signal<br>Name (USB) |
|-----|----------|------------------|----------------------|
| D5  | Reserved |                  | N/C                  |
| D6  | Reserved |                  | N/C                  |
| D7  | Reserved |                  | N/C                  |
| D8  | Power    |                  | OVC_VDD              |
| D9  | Output   | Static           | OVC_DET              |
| D10 | Power    |                  | OVC_VDDA             |
| D11 | Input    | Static           | OVC_SENSE            |
| D12 | Power    |                  | VSS                  |

| Figure | 4-1 | Pin | l ist hv | Interface |
|--------|-----|-----|----------|-----------|
| Iguie  |     |     |          | menace    |

# 4.2.1 Pin Type and Activity Definitions

| Power:    | Power Supply Connections                                       |
|-----------|----------------------------------------------------------------|
| Passive:  | Connections to passive components (ex: Filter caps, etc)       |
| Input:    | Active Inputs to the sensor                                    |
| Output:   | Active Outputs from the sensor                                 |
| I/O:      | Active I/O's from the sensor (state / configuration dependent) |
| Reserved: | Do Not Connect anything to these pins                          |
| Static:   | DC or slowly changing voltages                                 |
| Active:   | Active Signals, Digital or Analog                              |
| VDDL:     | Fixed Active High Logic Level                                  |
| VSSL:     | Fixed Active Low Logic Level                                   |
| VDDA:     | Pixel Array Power supply pin                                   |
|           |                                                                |





# 4.3 **Pin Descriptions**

| Pin        | Signal Name  | Function Description                                                                            |
|------------|--------------|-------------------------------------------------------------------------------------------------|
|            |              | For pins D8-D12, Refer to the appropriate AuthenTec Reference Design for connection             |
|            |              | details                                                                                         |
| C5         | CLKSEL0      | Clock input option selection. Refer to section 4.4                                              |
| <b>B6</b>  | CLKSEL1      | Clock input option selection. Refer to section 4.4                                              |
| B1         | CLKSEL2      | Clock input option selection. Refer to section 4.4                                              |
| A3         | CT1          | Filter Capacitor - connect to pin A2 through a 0.1uF capacitor, standard bypass type            |
| A2         | CT2          | Filter Capacitor - connect to pin A3 through a 0.1uF capacitor, standard bypass type            |
| D1         | DRIVERING    | DriveRing - connection to the metal ring on the sensor surface. No other connections            |
|            |              | made.                                                                                           |
| A12        | DRIVERING    | DriveRing - connection to the metal ring on the sensor surface. No other connections            |
|            |              | made.                                                                                           |
| A4         | FINGERDRIVE  | TruePrint Signal output used to drive radio frequency signal through external circuitry to      |
|            |              | finger ring pins (A12 and D1). Controlled by internal excitation generator.                     |
| D9         | OVC_DET      | Over Current Detect Power Off output - Active low for power on. Refer to reference design       |
|            |              | schematics for connection details.                                                              |
| D11        | OVC_SENSE    | Load side of current sense resistor input for over current control. Refer to Ref. Design        |
| D8         |              | Over Current Detect Circuit Digital Power Supply Pin (V) Refer to Ref. Design                   |
| D10        |              | Over Current Detect Circuit Analog Power Supply Pin (V) Refer to Ref. Design                    |
| A5         | RESEI*       | Reset input - 2/3 threshold voltage with hysteretic input. Approximately 57 Kohm pull-up        |
|            |              | resistor internal, with tolerance of 30%. See section 5.3 for additional definition of a proper |
| Бо         | 8100         | Defer to Figure 5.1                                                                             |
| DO<br>D7   | SIO0<br>SIO1 | Refer to Figure 5.1                                                                             |
| D/<br>C7   | SIO1         | Pefer to Figure 5.1                                                                             |
|            | SIO2         | Pefer to Figure 5.1                                                                             |
| B12        | SIO3         | Refer to Figure 5.1                                                                             |
| DIZ<br>B11 | SI04         | Refer to Figure 5.1                                                                             |
| B10        | SIDE         | Refer to Figure 5.1                                                                             |
| B0<br>B0   | SI07         | Refer to Figure 5.1                                                                             |
| <u> </u>   | SIOR         | Refer to Figure 5.1                                                                             |
| Δ11        | SVS CIK      | Clock input pin - input clock used for all chip functions. See Figure 4-3 and Section 4.4 for   |
| ~          | OTO_OEK      | linnut characteristics and requirements                                                         |
| C12        | VDDA         | Pixel Array Power Connection                                                                    |
| C3         | VDDA         | Pixel Array Power Connection                                                                    |
| C10        | VDDA ON*     | External Array Power FET control - If used this pin may drive a high side P-channel FET         |
|            |              | See AuthenTec Reference Designs for connection details.                                         |
| A1         | VREF         | Voltage Reference output - to be connected to a capacitance of 0.22uF to ground                 |
|            |              | standard bypass type                                                                            |
| D12        | VSSOD        | Over Current Detect Circuit Return Supply pin (GND)                                             |
|            |              | Defense a log Defense a Defense at fine and state filter and a state / and a star               |

Figure 4-2 AES2501A Active Pin Functional Description





AES2501A can support a variety of clock sources, ranging in frequency from 6MHz up through 48MHz. The AES2501A uses a single pin crystal/resonator oscillator circuit that can also be overdriven with an external clock source. Clock frequency selection [including clocks driven into the SYS\_CLK pin] is done via the CLKSEL[2:0] input pins. The following table shows the CLKSEL[2:0] pin configurations:

| CLKSEL2 | CLKSEL1 | CLKSEL0 | Crystal/Resonator or Clock      |
|---------|---------|---------|---------------------------------|
| Pin B1  | Pin B6  | Pin C5  | Frequency                       |
| 0       | 0       | 0       | 6 MHz                           |
| 0       | 0       | 1       | Reserved                        |
| 0       | 1       | 0       | 12 MHz                          |
| 0       | 1       | 1       | 18 MHz                          |
| 1       | 0       | 0       | 24 MHz                          |
| 1       | 0       | 1       | Reserved                        |
| 1       | 1       | 0       | Reserved                        |
| 1       | 1       | 1       | 48 MHz (PLL Bypass, clock only) |

Table 4-1 CLKSEL[2:0] Decode

For USB applications, Crystal/Resonator frequency options include 6, 12, 18, and 24MHz.

# 4.4.1 Clock Specification

For the AES2501A, there are several different clocking options available: Crystal connection, ceramic resonator connection, and external clock driven. Appropriate application of clock sources is driven the desired circuit application (interface type) and reference design. This section addresses the specification requirements for an externally driven clock. All electrical and environmental conditions from the device specification apply as well.



When driving an external clock into the SYSCLK device pin, the following timing diagram applies:



| [1] | Parameter                 | [1] | Minimum          | [1] | Maximum       |
|-----|---------------------------|-----|------------------|-----|---------------|
| [2] | Freq. (USB<br>Interface)  | [2] | 12MHz –<br>0.25% | [2] | 12MHz + 0.25% |
| [3] | Jitter (USB<br>Interface) | [3] |                  | [3] | 0.2ns         |
| [4] | Tr                        | [4] | -                | [4] | 3ns           |
| [5] | Tf                        | [5] | -                | [5] | 3ns           |
| [6] | Thigh                     | [6] | 45%*[Tperiod]    | [6] | 55%*[Tperiod] |
| [7] | Tlow                      | [7] | 45%*[Tperiod]    | [7] | 55%*[Tperiod] |

Figure 4-3 External Clock Specifications



# 4.5 Timing Information

# 4.5.1 Image Scan Timing

The fastest scan time available is 32us per sixteen pixels and will limit image frame rates to less than [16x192 pixels \* 32us/16 pixels = 6.144 ms] or ~162.7 fps maximum. Transferring register data, histogram data, and authentication data will reduce this frame rate.

# 4.5.2 USB Interface

The AES2501A fingerprint sensor is as a USB low power device. This requires that the total current consumption be less than 100 mA and suspend current be less than 500uA. For all timing diagrams, please refer to the Universal Serial Bus Specification, Version 2.0. The AES2501A fully supports the USB selective suspend mode (C3 power state).

# 4.5.3 Finger Detect Auto-calibration

When using Finger Detect [delay method], the device is automatically calibrated once on power up. Sending a master reset to the device does not affect the setting of the reference delay value used for the finger detect calculation. If desired, the device can be re-calibrated by setting the Recalibrate FD bit [Reg82-D2], which is self-clearing.



AuthenTec, Inc.

# 5. System Interface Descriptions 5.1 Interface Select Control

For the USB interface, the following pin assignments apply:

| SIO / Pin  | USB           |     |
|------------|---------------|-----|
|            | (See section) | DIR |
| SIO0 / B8  | USB_OE*       | 0   |
| SIO1 / B7  | SUSPEND       | 0   |
| SIO2 / C7  | PID0          | I/O |
| SIO3 / C8  | PID1          | I/O |
| SIO4 / B12 | PID2          | I/O |
| SIO5 / B11 | PID3          | I/O |
| SIO6 / B10 | D-            | I/O |
| SIO7 / B9  | D+            | I/O |
| SIO8 / C9  | ENUM          | 0   |

Figure 5-1 SIO Pin Definitions for the USB Interface

AuthenTec Vendor ID = 08FFh, Product ID= 258xh



# 5.2 USB Interface

The USB interface is compliant with version 2.0 of the USB specification for full speed interfaces. The AES2501A sensor is designed as a USB low power device.

The on-chip USB implementation utilizes 3 endpoints in one interface (endpoint 0, 1, and 2).

Endpoint 0 supports control read and write transactions, including String Descriptor support for the device identification function in Windows.

Endpoint 1 is a BULKIN endpoint for data going from the Sensor to the Host.

Endpoint 2 is a BULKOUT endpoint for Sensor commands from the Host.

The following Descriptor Tables are included to show the enumeration information for all USB configurations.

| Field              | Index | Value     | Meaning                                  |
|--------------------|-------|-----------|------------------------------------------|
| bLength            | 0     | 12h       | Length of this descriptor = 18 bytes     |
| bDescriptorType    | 1     | 01h       | Descriptor Type = Device                 |
| bcdUSB(L)          | 2     | 10        | USB spec. version 1.10 (L)               |
| bcdUSB(H)          | 3     | 01        | USB spec. version 1.10 (H)               |
| bDeviceClass       | 4     | FFh       | Device class (FF is vendor specific)     |
| bDeviceSubClass    | 5     | FFh       | Device sub-class (FF is vendor specific) |
| bDeviceProtocol    | 6     | FFh       | Device Protocol (FF is vendor specific)  |
| bMaxPacketSize0    | 7     | 08h       | Max Packet size for EP0 = 8 bytes        |
| idVendor(L)        | 8     | FFh       | Vendor ID (L)                            |
| idVendor(H)        | 9     | 08h       | Vendor ID (H)                            |
| idProduct(L)       | 10    | 8Xh       | Product ID low byte programmed via       |
|                    |       |           | PID[3:0]                                 |
| idProduct(H)       | 11    | 25h       | Product ID high byte                     |
| bcdDevice(L)       | 12    | Device ID | Device ID (L)                            |
| bcdDevice(H)       | 13    | Device ID | Device ID (H)                            |
| iManufacturer      | 14    | 00h       | None                                     |
| iProduct           | 15    | 01h       | Product String – "Fingerprint Sensor"    |
| iSerialNumber      | 16    | 00h       | None                                     |
| bNumConfigurations | 17    | 01h       | One configuration in this interface      |

Table 5-1

**Device Descriptor** 





| Field               | Index | Value | Meaning                                                                   |
|---------------------|-------|-------|---------------------------------------------------------------------------|
| bLength             | 0     | 09h   | Length of this descriptor = 9 bytes                                       |
| bDescriptorType     | 1     | 02h   | Type = Configuration                                                      |
| wTotalLength(L)     | 2     | 20h   | Total Length(L) including Interface and Endpoint<br>descriptors           |
| wTotalLength(H)     | 3     | 00h   |                                                                           |
| bNumInterfaces      | 4     | 01h   | Number of interfaces in this configuration                                |
| bConfigurationValue | 5     | 01h   | Configuration value used by Set_Configuration to<br>select this interface |
| iConfiguration      | 6     | 00h   | 00h = no string reference                                                 |
| bmAttributes        | 7     | A0h   | A0h, Attributes: bus-powered, remote wake-up                              |
|                     |       |       | supported                                                                 |
| MaxPower            | 8     | 32h   | Max current =100mA                                                        |

Table 5-2

Default Configuration Descriptor

| Field              | Index | Value | Meaning                                                        |
|--------------------|-------|-------|----------------------------------------------------------------|
| bLength            | 0     | 09h   | Length of the Interface descriptor = 9 bytes                   |
| bDescriptorType    | 1     | 04h   | Descriptor type = interface                                    |
| bInterfaceNumber   | 2     | 00h   | Zero based index of this interface = 0                         |
| bAlternateSetting  | 3     | 00h   | Alternate setting =0                                           |
| bNumEndpoints      | 4     | 02h   | Number of endpoints in this interface (not counting endpoint0) |
| bInterfaceClass    | 5     | FFh   | Interface Class = vendor specific                              |
| bInterfaceSubClass | 6     | FFh   | Interface Sub Class = vendor specific                          |
| bInterfaceProtocol | 7     | FFh   | Interface Protocol = vendor specific                           |
| Interface          | 8     | 00h   | Index to string descriptor = none                              |

Table 5-3

Default Interface 0, Alternate Setting 0 Descriptor

| Field             | Index | Value | Meaning                          |
|-------------------|-------|-------|----------------------------------|
| bLength           | 0     | 07h   | Descriptor length = 7 bytes long |
| bDescriptorType   | 1     | 05h   | ENDPOINT descriptor              |
| bEndpointAddress  | 2     | 81h   | In endpoint, endpoint #1         |
| bmAttributes      | 3     | 02    | xfr type = Bulk                  |
| wMaxPacketSize(L) | 4     | 20h   | Max Packet Size = 32 bytes       |
| wMaxPacketSize(H) | 5     | 00h   |                                  |
| bInterval         | 6     | 00h   | Polling interval in milliseconds |
| Field             |       | Value | Meaning                          |
| bLength           | 0     | 07h   | Descriptor length = 7 bytes long |
| bDescriptorType   | 1     | 05h   | ENDPOINT descriptor              |
| bEndpointAddress  | 2     | 02h   | Out endpoint, endpoint #2        |
| bmAttributes      | 3     | 02h   | xfr type = Bulk                  |
| wMaxPacketSize(L) | 4     | 08h   | Max Packet Size = 8 bytes        |
| wMaxPacketSize(H) | 5     | 00h   |                                  |
| bInterval         | 6     | 00h   | Polling interval in milliseconds |

Table 5-4

Default Interface 0, Alternate Setting 0, Bulk Endpoint Descriptors



| Field           | Index | Value | Meaning                     |
|-----------------|-------|-------|-----------------------------|
| bLength         | 0     | 04h   | String Index 0              |
| bDescriptorType | 1     | 03h   | String descriptor type      |
| wLANGID(0)(L)   | 2     | 09h   | Language ID for English (L) |
| wLANGID(1)(H)   | 3     | 04h   | Language ID for English (H) |

Table 5-5String 0 Descriptor

| Field           | Index | Value | Meaning                                      |
|-----------------|-------|-------|----------------------------------------------|
| bLength         | 0     | 26h   | String Index 1                               |
| bDescriptorType | 1     | 03h   | String descriptor type                       |
| bString         | 2     | 4600h | "Fingerprint Sensor" – in UNICODE format "F" |
|                 | 4     | 6900h | "i", 00                                      |
|                 | 6     | 6E00h | "n", 00                                      |
|                 | 8     | 6700h | "g", 00                                      |
|                 | 10    | 6500h | "e", 00                                      |
|                 | 12    | 7200h | "r", 00                                      |
|                 | 14    | 7000h | "p", 00                                      |
|                 | 16    | 7200h | "r", 00                                      |
|                 | 18    | 6900h | "i", 00                                      |
|                 | 20    | 6E00h | "n", 00                                      |
|                 | 22    | 7400h | "t", 00                                      |
|                 | 24    | 2000h | " ", 00                                      |
|                 | 26    | 5300h | "S", 00                                      |
|                 | 28    | 6500h | "e", 00                                      |
|                 | 30    | 6E00h | "n", 00                                      |
|                 | 32    | 7300h | "s", 00                                      |
|                 | 34    | 6F00h | "o", 00                                      |
|                 | 36    | 7200h | "r", 00                                      |

Table 5-6String 1 Descriptor

A remote wakeup feature supports finger detect while the host has the sensor in the Suspend state. For finger detect wakeup, an internal low power, low frequency oscillator is used to cycle the 12 MHz oscillator on and off, with finger detect attempted whenever the 12 MHz oscillator is enabled. This cycle timing through the Finger Detect Rate register is selectable. Sending a "master reset" command to the sensor will cause a data buffer flush action to occur so any unsent data is made available to the host.

# 5.3 Reset

The reset input has an internal pull-up of 57K ohm with a tolerance of 30%. A nominal value of 47nF may be used to provide a proper reset to the device. A valid reset is achieved if the reset is still active (less than 2/3 of the VDD rail voltage) for 3 mS after the Vdd voltage has reached the specification limits.





The Register Map and bit level Register Descriptions are contained in this section. Reserved registers are not included in the descriptions section for clarity. Bolded text in the register descriptions indicates default functionality.

# 6.1 Register Map

| Reg | D6                                  | D5                                  | D4                                          | D3                                                       | D2                                                         | D1                                                         | D0                                                       | Reset |
|-----|-------------------------------------|-------------------------------------|---------------------------------------------|----------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------|-------|
| 80h | Reserved                            | Reserved                            | Reserved                                    | Nav. Mode                                                | OP_Enable                                                  | Scan Reset <sup>1</sup>                                    | Master Reset <sup>1</sup>                                | 00h   |
| 81h | Reserved                            | Reserved                            | Read IDn <sup>1</sup>                       | Clear One-<br>Shot <sup>1</sup>                          | Set One-Shot <sup>1</sup> /<br>One Shot <sup>2</sup>       | Read<br>Registers <sup>1</sup>                             | Continuous<br>Scan                                       | 00h   |
| 82h | Disable Auto<br>Update              | Reserved                            | Demod Blk Dis                               | Reserved                                                 | Reserved                                                   | Calibrate<br>Finger Det.                                   | Timer Freerun                                            | 04h   |
| 83h | Read Ref.<br>Delay                  | Finger Settling<br>Delay [1]        | Finger Settling<br>Delay [0]                | Reserved                                                 | Detect Rate [2]                                            | Detect Rate [1]                                            | Detect Rate [0]                                          | 13h   |
| 84h | Reserved                            | NAV_SEL[1]                          | NAV_SEL[0]                                  | Nav Corr<br>Range [3] <sup>2</sup>                       | Nav Corr<br>Range [2] <sup>2</sup>                         | Nav Corr<br>Range [1] <sup>2</sup>                         | Nav Corr<br>Range [0] <sup>2</sup>                       | 07h   |
| 85h | Reserved                            | Reserved                            | Nav Fing. Det.<br>Threshold [4]             | Nav Fing. Det.<br>Threshold [3]                          | Nav Fing. Det.<br>Threshold [2]                            | Nav Fing. Det.<br>Threshold [1]                            | Nav Fing. Det.<br>Threshold [0]                          | 02h   |
| 86h | Reserved                            | Nav. Reduce<br>LR                   | Reserved                                    | Nav. Thresh[3]                                           | Nav. Thresh[2]                                             | Nav. Thresh[1]                                             | Nav. Thresh[0]                                           | 01h   |
| 87h | Reserved                            | Reserved                            | Reserved                                    | Reserved                                                 | Detect Freq [2]                                            | Detect Freq [1]                                            | Detect Freq [0]                                          | 01h   |
| 88h | Reserved                            | Reserved                            | Reserved                                    | Column Scan<br>Rate [3]                                  | Column Scan<br>Rate [2]                                    | Column Scan<br>Rate [1]                                    | Column Scan<br>Rate [0]                                  | 03h   |
| 89h | Reserved                            | Reserved                            | Measure<br>Square                           | Reserved                                                 | Reserved                                                   | Meas Drive [1]                                             | Meas Drive [0]                                           | 02h   |
| 8Ah | Reserved                            | Reserved                            | Reserved                                    | Reserved                                                 | Meas Freq [2]                                              | Meas Freq [1]                                              | Meas Freq [0]                                            | 05h   |
| 8Bh | Reserved                            | Reserved                            | Reserved                                    | Reserved                                                 | Reserved                                                   | Reserved                                                   | Reserved                                                 | 00h   |
| 8Ch | Demod<br>Phase[13]                  | Demod<br>Phase[12]                  | Demod<br>Phase[11]                          | Demod<br>Phase[10]                                       | Demod Phase<br>[9]                                         | Demod Phase<br>[8]                                         | Demod Phase<br>[7]                                       | 40h   |
| 8Dh | Reserved                            | Reserved                            | Reserved                                    | Reserved                                                 | Reserved                                                   | Reserved                                                   | Reserved                                                 | 00h   |
| 8Eh | Reserved                            | Gain 2 [1]                          | Gain 2 [0]                                  | Reserved                                                 | Reserved                                                   | Gain1 [1]                                                  | Gain1 [0]                                                | 00h   |
| 8Fh | Bias2 Unlock                        | Bias 2 [1]                          | Bias 2 [0]                                  | Reserved                                                 | Bias1 Unlock                                               | Bias 1 [1]                                                 | Bias 1 [0]                                               | 00h   |
| 90h | Carrier Null En                     | Carrier Null [5]                    | Carrier Null [4]                            | Carrier Null [3]                                         | Carrier Null [2]                                           | Carrier Null [1]                                           | Carrier Null [0]                                         | 00h   |
| 91h | A/D Reference<br>High [6]           | A/D Reference<br>High 5]            | A/D Reference<br>High [4]                   | A/D Reference<br>High [3]                                | A/D Reference<br>High [2]                                  | A/D Reference<br>High [1]                                  | A/D Reference<br>High [0]                                | 70h   |
| 92h | A/D Reference<br>Low [6]            | A/D Reference<br>Low [5]            | A/D Reference<br>Low [4]                    | A/D Reference<br>Low [3]                                 | A/D Reference<br>Low [2]                                   | A/D Reference<br>Low [1]                                   | A/D Reference<br>Low [0]                                 | 20h   |
| 93h | Reserved                            | Reserved                            | Reserved                                    | Reserved                                                 | Reserved                                                   | Reserved                                                   | Reserved                                                 | 00h   |
| 94h | Reserved                            | Reserved                            | Reserved                                    | Reserved                                                 | Reserved                                                   | Reserved                                                   | Reserved                                                 | 0Ah   |
| 95h | Start Col [6]                       | Start Col [5]                       | Start Col [4]                               | Start Col [3]                                            | Start Col [2]                                              | Start Col [1]                                              | Start Col [0]                                            | 00h   |
| 96h | End Col [6]                         | End Col [5]                         | End Col [4]                                 | End Col [3]                                              | End Col [2]                                                | End Col [1]                                                | End Col [0]                                              | 7Fh   |
| 97h | Low Resolution                      | Image Res. [1]                      | Image Res. [0]                              | Bin. Threshold<br>[3]                                    | Bin. Threshold<br>[2]                                      | Bin. Threshold<br>[1]                                      | Bin. Threshold<br>[0]                                    | 08h   |
| 98h | Reserved                            | Test Register<br>Enable             | Registers First                             | Histo Full Array                                         | Reserved                                                   | Histo Data<br>Enable                                       | Image Data<br>Disable                                    | 20h   |
| 99h | Reserved                            | Reserved                            | Reserved                                    | GPIO3                                                    | GPIO2                                                      | GPIO1                                                      | GPIO0                                                    | 00h   |
| 9Ah | Power Cycled <sup>2</sup>           | Scan Paused <sup>2</sup>            | Finger Present<br>- Timer <sup>2</sup>      | Scan State [3] <sup>2</sup>                              | Scan State [2] <sup>2</sup>                                | Scan State [1] <sup>2</sup>                                | Scan State [0] <sup>2</sup>                              | XXh   |
| 9Bh | Reserved                            | Reserved                            | Finger Present<br>- Navigation <sup>2</sup> | Challenge<br>Word [31] <sup>1</sup> /<br>Up <sup>2</sup> | Challenge<br>Word [30] <sup>1</sup> /<br>Down <sup>2</sup> | Challenge<br>Word [29] <sup>1</sup> /<br>Left <sup>2</sup> | Challenge Word<br>[28] <sup>1</sup> / Right <sup>2</sup> | 00h   |
| 9Ch | Challenge<br>Word [27] <sup>1</sup> | Challenge<br>Word [26] <sup>1</sup> | Challenge<br>Word [25] <sup>1</sup>         | Challenge<br>Word [24] <sup>1</sup>                      | Challenge<br>Word [23] <sup>1</sup>                        | Challenge<br>Word [22] <sup>1</sup>                        | Challenge Word<br>[21] <sup>1</sup>                      | 00h   |

![](_page_24_Picture_4.jpeg)

![](_page_25_Picture_0.jpeg)

# AuthenTec, Inc. Personal Security for the Real World™

| Reg | D6                                            | D5                                            | D4                                            | D3                                            | D2                                            | D1                                                              | D0                                                              | Reset |
|-----|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-------|
| 9Dh | Challenge<br>Word [20] <sup>1</sup>           | Challenge<br>Word [19] <sup>1</sup>           | Challenge<br>Word [18] <sup>1</sup>           | Challenge<br>Word [17] <sup>1</sup>           | Challenge<br>Word [16] <sup>1</sup>           | Challenge<br>Word [15] <sup>1</sup>                             | Challenge Word<br>[14] <sup>1</sup>                             | 06h   |
| 9Eh | Challenge<br>Word [13] <sup>1</sup>           | Challenge<br>Word [12] <sup>1</sup>           | Challenge<br>Word [11] <sup>1</sup>           | Challenge<br>Word [10] <sup>1</sup>           | Challenge<br>Word [9] <sup>1</sup> /          | Challenge<br>Word [8] <sup>1</sup> /<br>IO_SEL [1] <sup>2</sup> | Challenge Word<br>[7] <sup>1</sup> /<br>IO_SEL [0] <sup>2</sup> | 0Xh   |
| 9Fh | Challenge<br>Word [6] <sup>1</sup>            | Challenge<br>Word [5] <sup>1</sup>            | Challenge<br>Word [4] <sup>1</sup>            | Challenge<br>Word [3] <sup>1</sup>            | Challenge<br>Word [2] <sup>1</sup>            | Challenge<br>Word [1] <sup>1</sup>                              | Challenge Word<br>[0] <sup>1</sup>                              | 10h   |
| A0h | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                                        | Reserved                                                        | XXh   |
| A1h | Excit Bias<br>Unlock                          | Manual Excit<br>Bias [1]                      | Manual Excit<br>Bias [0]                      | Reserved                                      | Sense Amp<br>Bias Unlock                      | Sense Amp<br>Bias [1]                                           | Sense Amp<br>Bias [0]                                           | 00h   |
| A2h | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                                        | Reserved                                                        | 00h   |
| A3h | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                                        | Reserved                                                        | 00h   |
| A4h | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                                        | Reserved                                                        | 00h   |
| A5h | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                                        | Reserved                                                        | 00h   |
| A6h | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                                        | Reserved                                                        | 00h   |
| A7h | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                                        | Reserved                                                        | 02h   |
| A8h | Decrease Rdet                                 | Reserved                                      | Reserved                                      | FD Threshold<br>[3]                           | FD Threshold<br>[2]                           | FD Threshold<br>[1]                                             | FD Threshold<br>[0]                                             | 01h   |
| A9h | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                                        | Reserved                                                        | 00h   |
| AAh | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                                        | Reserved                                                        | 00h   |
| ABh | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                                        | Reserved                                                        | 00h   |
| ACh | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                                        | Single Reg En                                                   | 20h   |
| ADh | Single Reg ID<br>[6]                          | Single Reg ID<br>[5]                          | Single Reg ID<br>[4]                          | Single Reg ID<br>[3]                          | Single Reg ID<br>[2]                          | Single Reg ID<br>[1]                                            | Single Reg ID<br>[0]                                            | 00h   |
| AEh | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | FDRV X [9]                                    | FDRV X [8]                                                      | FDRV X [7]                                                      | XXh   |
| AFh | FDRV X [6]                                    | FDRV X [5]                                    | FDRV X [4]                                    | FDRV X [3]                                    | FDRV X [2]                                    | FDRV X [1]                                                      | FDRV X [0]                                                      | XXh   |
| B0h | Reserved                                      | Reserved                                      | Watchdog<br>Enable                            | Reserved                                      | Watchdog<br>Time[2]                           | Watchdog<br>Time[1]                                             | Watchdog<br>Time[0]                                             | 00h   |
| B1h | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                                        | Reserved                                                        | 00h   |
| B2h | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                                        | Reserved                                                        | 00h   |
| B3h | Reserved                                      | Reserved                                      | Reserved                                      | GPIO disable<br>[3]                           | GPIO disable<br>[2]                           | GPIO disable<br>[1]                                             | GPIO disable<br>[0]                                             | 0Fh   |
| B4h | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                                        | Reserved                                                        | 00h   |
| B5h | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                                        | Reserved                                                        | 00h   |
| B6h | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                                        | Reserved                                                        | 26h   |
| B7h | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                                        | Reserved                                                        | 0Dh   |
| B8h | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                                        | Reserved                                                        | 6Ch   |
| B9h | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                                        | Reserved                                                        | 00h   |
| BAh | SOF                                           | SOF                                           | SOF                                           | SOF                                           | SOF                                           | SOF                                                             | SOF                                                             | 00h   |
|     | Timestamp/<br>FreeRun [13] <sup>2</sup>       | Timestamp/<br>FreeRun [12] <sup>2</sup>       | Timestamp/<br>FreeRun [11] <sup>2</sup>       | Timestamp/<br>FreeRun [10] <sup>2</sup>       | Timestamp/<br>FreeRun [9] <sup>2</sup>        | Timestamp/<br>FreeRun [8] <sup>2</sup>                          | Timestamp/<br>FreeRun [7] <sup>2</sup>                          |       |
| BBh | SOF<br>Timestamp/<br>FreeRun [6] <sup>2</sup> | SOF<br>Timestamp/<br>FreeRun [5] <sup>2</sup> | SOF<br>Timestamp/<br>FreeRun [4] <sup>2</sup> | SOF<br>Timestamp/<br>FreeRun [3] <sup>2</sup> | SOF<br>Timestamp/<br>FreeRun [2] <sup>2</sup> | SOF<br>Timestamp/<br>FreeRun [1] <sup>2</sup>                   | SOF<br>Timestamp/<br>FreeRun [0] <sup>2</sup>                   | 00h   |
| BCh | EOF<br>Timestamp [13]                         | EOF<br>Timestamp [12]                         | EOF<br>Timestamp [11]                         | EOF<br>Timestamp [10]                         | EOF<br>Timestamp [9] <sup>2</sup>             | EOF<br>Timestamp [8] <sup>2</sup>                               | EOF<br>Timestamp [7] <sup>2</sup>                               | 00h   |
| BDh | EOF<br>Timestamp [6] <sup>2</sup>             | EOF<br>Timestamp [5] <sup>2</sup>             | EOF<br>Timestamp [4] <sup>2</sup>             | EOF<br>Timestamp [3] <sup>2</sup>             | EOF<br>Timestamp [2] <sup>2</sup>             | EOF<br>Timestamp [1] <sup>2</sup>                               | EOF<br>Timestamp [0] <sup>2</sup>                               | 00h   |
| BEh | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                      | Reserved                                                        | Reserved                                                        | 00h   |

# Table 6-1 Registers Summary

<sup>1</sup>W rite Only <sup>2</sup>Read Only

The following sections describe the functional settings for each active Register. Registers which are entirely reserved are not shown in the description sections below.

![](_page_25_Picture_6.jpeg)

![](_page_26_Picture_0.jpeg)

#### (80h)

|                | D7 | D6       | D5       | D4       | D3          | D2           | D1            | D0              |
|----------------|----|----------|----------|----------|-------------|--------------|---------------|-----------------|
|                | 0  | Reserved | Reserved | Reserved | Nav<br>Mode | Op<br>Enable | Scan<br>Reset | Master<br>Reset |
| Reset<br>Value | 0  | 0        | 0        | 0        | 0           | 0            | 0             | 0               |

#### Nav Mode

- 1 Device will operate in navigation mode, making the contents of register 9Bh valid.
- 0 Device is in imaging mode; contents of register 9Bh are invalid.

### OP Enable

- 1 Imaging or Navigation Mode is enabled.
- 0 Forces idle mode. Clocking is disabled except when enabled by interface activity.

#### Scan Reset

1 Perform a scan reset. This stops any imaging scan currently in progress and restarts the scan sequencer at recheck for finger present. If an image scan is not in progress, no action is performed. This bit is self-resetting and will always read back as zero.

#### Master Reset

1 Perform a master reset (same as Power On Reset). This resets all registers to their initial values. Output registers and buffer registers are loaded with reset values. This bit is self-resetting and will always read back as zero. This reset does not affect GPIO register settings.

#### Headings in bold denote default state functionality

![](_page_26_Picture_15.jpeg)

![](_page_27_Picture_0.jpeg)

#### (81h)

|                | D7 | D6       | D5       | D4         | D3                | D2               | D1                | D0                 |
|----------------|----|----------|----------|------------|-------------------|------------------|-------------------|--------------------|
|                | 0  | Reserved | Reserved | Read<br>ID | Clear<br>One-Shot | Set One-<br>Shot | Read<br>Registers | Continuous<br>Scan |
| Reset<br>Value | 0  | 0        | 0        | 0          | 0                 | 0                | 0                 | 0                  |

#### Read ID

1

1

Read the ID register of the chip. This bit is self-resetting and will always read back as zero.

#### Clear One-Shot

Clears the one-shot flip-flop. This bit is self-resetting and will always read back as zero.

#### Set One-Shot

1 Set the one-shot flip-flop to allow a single image scan. As soon as the necessary conditions are met (finger present, output buffers empty, output channel ready for data, and finger settling delay expired), an image scan will occur. Note that the Continuous Scan bit must be low for this to have any effect. This bit is self-resetting. The value read for this bit position indicates a single scan is pending. Scan pending can be reset by Scan Reset or Master Reset or by the Clear One-Shot bit.

#### **Read Registers**

1 Read the current state of the local registers in the Sensor IC. The request is responded to only if not in Imaging mode. This bit is self-resetting and will always read back as zero.

#### Continuous Scan

- 1 Continuous Scan. As long as the necessary conditions are met, image scans will be performed.
- 0 Controlled Scan. Single scans are initiated by writing a '1' to the Set One-Shot bit.

![](_page_27_Picture_15.jpeg)

![](_page_28_Picture_0.jpeg)

# 6.1.1.3 Excitation Common Controls (EXCITCTRL)

|                | D7 | D6                           | D5       | D4                   | D3       | D2       | D1                       | D0                |
|----------------|----|------------------------------|----------|----------------------|----------|----------|--------------------------|-------------------|
|                | 0  | FD Auto<br>Update<br>Disable | Reserved | Demod Blk<br>Disable | Reserved | Reserved | Calibrate<br>Finger Det. | Timer Free<br>Run |
| Reset<br>Value | 0  | 0                            | 0        | 0                    | 0        | 1        | 0                        | 0                 |

(82h)

FD Auto Update Disable

1 Disables digital finger detect auto-update function

#### 0 Enables digital finger detect auto-update function

Demod Blk Disable

- 1 Disables option of setting Demod Clock low during DCRSTR.
- 0 Normal operation.

Calibrate Finger Det..

1 Re-calibrate finger detect timer count. Should be done when finger is not on sensor. This bit is self-resetting and always reads back as a '0'.

Timer Free Run

- 1 SOF TIMESTAMP is a free running counter, with lsb changing every 16us.
- 0 SOF TIMESTAMP is updated at start of frame, normal operation.

![](_page_28_Picture_14.jpeg)

![](_page_28_Picture_15.jpeg)

![](_page_29_Picture_0.jpeg)

#### (83h)

|                | D7 | D6                    | D5                              | D4                              | D3       | D2                | D1                 | D0                 |
|----------------|----|-----------------------|---------------------------------|---------------------------------|----------|-------------------|--------------------|--------------------|
|                | 0  | Read<br>Ref.<br>Delay | Finger<br>Settling<br>Delay [1] | Finger<br>Settling<br>Delay [0] | Reserved | Detect<br>Rate[2] | Detect<br>Rate [1] | Detect<br>Rate [0] |
| Reset<br>Value | 0  | 0                     | 0                               | 1                               | 0        | 0                 | 1                  | 1                  |

#### Read Ref. Delay

1

0

### Registers 0xAE and 0xAF read out FDVR\_DELAY

Registers 0xAE and 0xAF read out FDVR\_REFERENCE

Finger Settling Delay

Sets the delay from when Finger On Sensor goes active (and remains active) to when a transition is made to imaging mode.

| 00 | 16 ms  |
|----|--------|
| 01 | 32 ms  |
| 10 | 64 ms  |
| 11 | 128 ms |

Finger Detect Rate [2:0] – Imaging Mode

Sets the rate at which the stimulus source and finger detect circuitry are turned on. For all settings except continuous, the stimulus is turned on for 128 us. The 16mS and 31mS settings get remapped to 62mS in SUSPEND state with the Remote Wakeup feature enabled.

- 000 Detection is continuous.
- 001 Detect cycles occur every 16 msec.
- 010 Detect cycles occur every 31 msec.
- 011 Detect cycles occur every 62 msec.
- 100 Detect cycles occur every 125 msec.
- 101 Detect cycles occur every 250 msec.
- 110 Detect cycles occur every 500 msec.
- >110 Detect cycles occur every 1 sec.

Finger Detect Rate [2:0] - Navigation Mode

Sets the time in between navigation data packets when in navigation mode.

- 000 Nav. Off time = 4ms (packet spacing 10ms).
- 001 Nav. Off time = 4ms (packet spacing 10ms).
- 010 Nav. Off time = 8ms (packet spacing 14ms).
- **011** Nav. Off time = 16ms (packet spacing 22ms).
- 1XX Nav. Off time = 32ms (packet spacing 38ms).

![](_page_29_Picture_27.jpeg)

![](_page_30_Picture_0.jpeg)

# 6.1.1.5 Navigation Correlation Range (NAVCORRNGE)

|                | D7 | D6       | D5                 | D4                 | D3                        | D2                        | D1                        | D0                        |
|----------------|----|----------|--------------------|--------------------|---------------------------|---------------------------|---------------------------|---------------------------|
|                | 0  | Reserved | Nav.<br>Select [1] | Nav.<br>Select [0] | Nav.<br>Corr.<br>Range[3] | Nav.<br>Corr.<br>Range[2] | Nav.<br>Corr.<br>Range[1] | Nav.<br>Corr.<br>Range[0] |
| Reset<br>Value | 0  | 0        | 0                  | 0                  | 0                         | 1                         | 1                         | 1                         |

(84h)

Nav. Select[1:0] - Selects mode for determining Up/Down versus Left/Right

# 00 If the number of excited pixels in the center column is greater than Register 0x85, then Up/Down determination will be made, otherwise make Left/Right determination.

01 If excited pixels in the left, center, and right columns are greater than Register 0x85, then Up/Down determination will be made, otherwise make Left/Right determination.

1X Reserved.

#### Nav. Corr. Range[3:0]

This register selects the shift range for correlation when in navigation mode and imaging mode for determining shifts to peak correlation. This value limits the number of pixel shifts of the reference images when correlating with the current center column of pixel data. When reference columns are shifted, the fill data is '0', which can in some circumstances cause errors in the correlation data. The default value in this register should be acceptable for most finger data.

## 6.1.1.6 Navigation Finger Detect Threshold (NAVFDTHRSH) (85h)

|                | D7 | D6       | D5       | D4                                | D3                                | D2                                | D1                                | D0                                |
|----------------|----|----------|----------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|
|                | 0  | Reserved | Reserved | Nav. Fing.<br>Detect<br>Thresh[4] | Nav. Fing.<br>Detect<br>Thresh[3] | Nav. Fing.<br>Detect<br>Thresh[2] | Nav. Fing.<br>Detect<br>Thresh[1] | Nav. Fing.<br>Detect<br>Thresh[0] |
| Reset<br>Value | 0  | 0        | 0        | 0                                 | 0                                 | 0                                 | 1                                 | 0                                 |

Nav. Fing Detect Thresh[4:0]

Sets the threshold for image based finger detect in navigation mode. It is used to determine if there is a sufficient amount of pixel data in the center column to do up/down direction determination vs. left/right determination. See Register 0x84 for additional options.

![](_page_31_Picture_0.jpeg)

(86h)

|                | D7 | D6       | D5                  | D4       | D3                    | D2                    | D1                    | D0                    |
|----------------|----|----------|---------------------|----------|-----------------------|-----------------------|-----------------------|-----------------------|
|                | 0  | Reserved | Nav<br>Reduce<br>LR | Reserved | NAV_<br>THRESH<br>[3] | NAV_<br>THRESH<br>[2] | NAV_<br>THRESH<br>[1] | NAV_<br>THRESH<br>[0] |
| Reset<br>Value | 0  | 0        | 0                   | 0        | 0                     | 0                     | 0                     | 1                     |

Nav Reduce LR

Sets location of Left/Right columns for navigation purposes.

1 Navigation Left column is at 32, Right column is at 159.

0 Navigation Left column is at 16, Right column is at 175.

#### NAV\_THRESH[3:0]

Sets threshold for image correlation. When 'Up' correlation results are compared to 'Down' correlation results, the difference between them must be greater than NAV\_THRESH in order for a direction answer to be generated. This register is used to adjust correlation sensitivity.

![](_page_31_Picture_10.jpeg)

![](_page_32_Picture_0.jpeg)

# 6.1.1.8 Detect Frequency (DETFREQ)

## (87h)

|                | D7 | D6       | D5       | D4       | D3       | D2                 | D1                 | D0                 |
|----------------|----|----------|----------|----------|----------|--------------------|--------------------|--------------------|
|                | 0  | Reserved | Reserved | Reserved | Reserved | Detect<br>Freq [2] | Detect<br>Freq [1] | Detect<br>Freq [0] |
| Reset<br>Value | 0  | 0        | 0        | 0        | 0        | 0                  | 0                  | 1                  |

Detect Frequency

Sets the frequency of the excitation generator when in Detect mode. Out of range values default to the 2 MHz setting.

| 001 | 125 KHz |
|-----|---------|
| 010 | 250 KHz |
| 011 | 500 KHz |
| 100 | 1 MHz   |
| 101 | 2 MHz   |
|     |         |

![](_page_32_Picture_7.jpeg)

![](_page_32_Picture_8.jpeg)

![](_page_33_Picture_0.jpeg)

|                | D7 | D6       | D5       | D4       | D3                         | D2                         | D1                         | D0                         |
|----------------|----|----------|----------|----------|----------------------------|----------------------------|----------------------------|----------------------------|
|                | 0  | Reserved | Reserved | Reserved | Column<br>Scan<br>Rate [3] | Column<br>Scan<br>Rate [2] | Column<br>Scan<br>Rate [1] | Column<br>Scan<br>Rate [0] |
| Reset<br>Value | 0  | 0        | 0        | 0        | 0                          | 0                          | 1                          | 1                          |

Column Scan Rate [3:0]

Sets the time used for scanning one column when using standard Analog Channel circuitry. Out of range settings default to the 2048 us scan period. The time shown in the table for additional data is the time to send the end of frame data (9 bytes authentication word and header plus 64 bytes register data) and assumes the lowest valid baud rate. The Min Baud Rate shown is the lowest baud rate that can be used in gray scale mode (non-packed) without causing scanning to pause. The pixel integration time can be calculated using the equation:

(88h)

Pixel integration time = Column Rate – 20us

| Value | Column   | Image Time     |
|-------|----------|----------------|
|       | Rate     |                |
| 0000  | Reserved |                |
| 0001  | Reserved |                |
| 0010  | 32 us    | Required Value |
|       |          | for best       |
|       |          | performance    |
| 0011  | 64 us    |                |
| 0100  | 128 us   |                |
| 0101  | 256 us   |                |
| 0110  | 512 us   |                |
| 0111  | 1024 us  |                |
| 1000  | 2048 us  |                |
| 1001  | 4096 us  |                |
| 1010  | 8192 us  |                |
| 1011  | 16384 us |                |
| 1100  | 32768 us |                |
| 1101  | 65536 us |                |
| 111X  | 65536 us |                |

![](_page_33_Picture_6.jpeg)

![](_page_34_Picture_0.jpeg)

# Measure Drive (VDCTRLMD) (89h)

|                | D7 | D6       | D5       | D4                | D3       | D2       | D1                   | D0                   |
|----------------|----|----------|----------|-------------------|----------|----------|----------------------|----------------------|
|                | 0  | Reserved | Reserved | Measure<br>Square | Reserved | Reserved | Measure<br>Drive [1] | Measure<br>Drive [0] |
| Reset<br>Value | 0  | 0        | 0        | 0                 | 0        | 0        | 1                    | 0                    |

Measure Square

1 Selects square wave drive during measure

Selects sine wave drive during measure 0

Measure Drive

Sets the drive level of the excitation generator when using sine wave in Measure mode.

- 0.325 V<sub>pp</sub> 0.65 V<sub>pp</sub> **1.3 V<sub>pp</sub>** 00
- 01
- 10
- 11 2.6 V<sub>pp</sub>

![](_page_34_Picture_13.jpeg)

![](_page_35_Picture_0.jpeg)

# **Measure Frequency (MEASFREQ)**

|                | D7 | D6       | D5       | D4       | D3       | D2                  | D1                  | D0                  |
|----------------|----|----------|----------|----------|----------|---------------------|---------------------|---------------------|
|                | 0  | Reserved | Reserved | Reserved | Reserved | Measure<br>Freq [2] | Measure<br>Freq [1] | Measure<br>Freq [0] |
| Reset<br>Value | 0  | 0        | 0        | 0        | 0        | 1                   | 0                   | 1                   |

Measure Frequency

Sets the frequency of the excitation generator when in Detect mode. Out of range values default to the 2 MHz setting.

(8Ah)

| 001 | 125 KHz |
|-----|---------|
| 010 | 250 KHz |
| 011 | 500 KHz |
| 100 | 1 MHz   |
| 101 | 2 MHz   |

For best results, the measurement frequency and column scan rate should be selected so that at least 16 cycles of the measurement frequency occur during the integration time period (see column scan rate).

![](_page_35_Picture_7.jpeg)

![](_page_35_Picture_8.jpeg)

![](_page_36_Picture_0.jpeg)

# (8Ch)

|                | D7 | D6                     | D5                     | D4                     | D3                     | D2                 | D1                 | D0                 |
|----------------|----|------------------------|------------------------|------------------------|------------------------|--------------------|--------------------|--------------------|
|                | 0  | Demod<br>Phase<br>[13] | Demod<br>Phase<br>[12] | Demod<br>Phase<br>[11] | Demod<br>Phase<br>[10] | Demod<br>Phase [9] | Demod<br>Phase [8] | Demod<br>Phase [7] |
| Reset<br>Value | 0  | 1                      | 0                      | 0                      | 0                      | 0                  | 0                  | 0                  |

## Demod Phase

Combined with the next register, Demod Phase 1, these set the phase of the demodulation clock relative to the positive zero crossing of the excitation generator. The bit weighting has the following relative scales:

| Bit[13] - bit weight = | 180 degrees        |
|------------------------|--------------------|
| Bit[7] – bit weight =  | 2.8125 degrees     |
| Bit[6] – bit weight =  | 1.40625 degrees    |
| Bit[0] - bit weight =  | 0.02197256 degrees |

Default phase is 40h.

.

![](_page_37_Picture_0.jpeg)

# (8Eh)

|                | D7 | D6       | D5                      | D4                      | D3       | D2       | D1                      | D0                      |
|----------------|----|----------|-------------------------|-------------------------|----------|----------|-------------------------|-------------------------|
|                | 0  | Reserved | Sensor<br>Gain 2<br>[1] | Sensor<br>Gain 2<br>[0] | Reserved | Reserved | Sensor<br>Gain 1<br>[1] | Sensor<br>Gain 1<br>[0] |
| Reset<br>Value | 0  | 0        | 0                       | 0                       | 0        | 0        | 0                       | 0                       |

Sensor Gain #2

Sets the gain in the second stage of the analog channel (channel buffer).

| 00 | 2x |
|----|----|
| 01 | 4x |
| 10 | 8x |

11 16x

Sensor Gain #1

Sets the gain in the first stage of the analog channel (array buffer).

- 00 2x
- 01 4x
- 10 8x
- 11 16x

![](_page_37_Picture_14.jpeg)

![](_page_38_Picture_0.jpeg)

(8Fh)

|                | D7 | D6               | D5            | D4            | D3       | D2               | D1            | D0            |
|----------------|----|------------------|---------------|---------------|----------|------------------|---------------|---------------|
|                | 0  | Bias 2<br>Unlock | Bias 2<br>[1] | Bias 2<br>[0] | Reserved | Bias 1<br>Unlock | Bias 1<br>[1] | Bias 1<br>[0] |
| Reset<br>Value | 0  | 0                | 0             | 0             | 0        | 0                | 0             | 0             |

Bias 2 Unlock

Sets the bias current in the second stage of the analog channel (channel buffer).

- 0 Bias 2 is locked to measure frequency
  - Bias 2 is not locked to measure frequency

Sensor Bias #2

1

Sets the bias current in the second stage of the analog channel (channel buffer).

| 00 | 150 uA  |
|----|---------|
| 01 | 300 uA  |
| 10 | 600 uA  |
| 11 | 1200 uA |

Bias 1 Unlock

Sets the bias current in the first stage of the analog channel (array buffer).

| 0 | Bias | 1 | is lo | cŀ | ced | l to | measure | frequency |
|---|------|---|-------|----|-----|------|---------|-----------|
|   | -    |   |       |    |     |      |         |           |

| Bias 1 is not locked to measure frequen | су |
|-----------------------------------------|----|
|-----------------------------------------|----|

Sensor Bias #1

Sets the bias current in the first stage of the analog channel (array buffer).

| 00 | 90 uA  |
|----|--------|
| 01 | 180 uA |
| 10 | 360 uA |
| 11 | 720 uA |

The total expected analog channel current (IVDDA3) due to these settings is sixteen times the sum of the two currents (the analog channel is sixteen wide).

![](_page_38_Picture_18.jpeg)

![](_page_39_Picture_0.jpeg)

(90h)

|                | D7 | D6                                  | D5                               | D4                               | D3                               | D2                               | D1                               | D0                               |
|----------------|----|-------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
|                | 0  | Carrier<br>Offset<br>Null<br>Enable | Carrier<br>Offset<br>Null<br>[5] | Carrier<br>Offset<br>Null<br>[4] | Carrier<br>Offset<br>Null<br>[3] | Carrier<br>Offset<br>Null<br>[2] | Carrier<br>Offset<br>Null<br>[1] | Carrier<br>Offset<br>Null<br>[0] |
| Reset<br>Value | 0  | 0                                   | 0                                | 0                                | 0                                | 0                                | 0                                | 0                                |

Carrier Null Enable

1Enables Carrier Null.0Disables Carrier Null.

Carrier Offset Null

Adds a negative voltage to the signal prior to the A/D. The table below shows the voltages associated with each setting for a typical  $V_{CC}$  of 3.3V. Voos is the DAC output, and the Output Step is the voltage summed with the signal. Vstep = 0.103125 \* [setting+1]; based on Vdd = 3.30V

| Value  | Voos        | Output Step   |
|--------|-------------|---------------|
| 000000 | 0.0515625 V | 0.0 V         |
| 000001 | 0.103125 V  | -0. 0515625 V |
|        |             |               |
| 111110 | 3.2484375 V | -3.196875V    |
| 111111 | 3.3         | -3.2484375V   |

![](_page_39_Picture_8.jpeg)

![](_page_40_Picture_0.jpeg)

#### (91h)

|                | D7 | D6                     | D5                     | D4                     | D3                     | D2                     | D1                     | D0                     |
|----------------|----|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
|                | 0  | A/D Ref<br>High<br>[6] | A/D Ref<br>High<br>[5] | A/D Ref<br>High<br>[4] | A/D Ref<br>High<br>[3] | A/D Ref<br>High<br>[2] | A/D Ref<br>High<br>[1] | A/D Ref<br>High<br>[0] |
| Reset<br>Value | 0  | 1                      | 1                      | 1                      | 0                      | 0                      | 0                      | 0                      |

A/D Reference High

Sets the high reference voltage to the A/D converter. The actual voltage reference to the A/D is (Vdd/128) \* (setting + 1); based on Vdd = 3.30V. [default 70h]

## 6.1.1.17 A/D Reference Low (ADREFLO)

### (92h)

|                | D7 | D6                    | D5                    | D4                    | D3                    | D2                    | D1                    | D0                    |
|----------------|----|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|                | 0  | A/D Ref<br>Low<br>[6] | A/D Ref<br>Low<br>[5] | A/D Ref<br>Low<br>[4] | A/D Ref<br>Low<br>[3] | A/D Ref<br>Low<br>[2] | A/D Ref<br>Low<br>[1] | A/D Ref<br>Low<br>[0] |
| Reset<br>Value | 0  | 0                     | 1                     | 0                     | 0                     | 0                     | 0                     | 0                     |

A/D Reference Low

Sets the low reference voltage to the A/D converter. The actual voltage reference to the A/D is (Vdd/128) \* (setting + 1); based on Vdd = 3.30V. [default 20h]

![](_page_40_Picture_10.jpeg)

![](_page_41_Picture_0.jpeg)

(95h)

|                | D7 | D6                     | D5                     | D4                     | D3                     | D2                     | D1                     | D0                     |
|----------------|----|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
|                | 0  | Start<br>Column<br>[6] | Start<br>Column<br>[5] | Start<br>Column<br>[4] | Start<br>Column<br>[3] | Start<br>Column<br>[2] | Start<br>Column<br>[1] | Start<br>Column<br>[0] |
| Reset<br>Value | 0  | 0                      | 0                      | 0                      | 0                      | 0                      | 0                      | 0                      |

#### Start Column

Sets the starting column for an image scan. The actual starting column is (value\*4).

#### End Column(ENDCOL) 6.1.1.19 (96h) D7 D2 D6 D5 D4 D3 D1 D0 0 End End End End End End End Column Column Column Column Column Column Column [6] [5] [4] [3] [2] [1] [0] Reset 0 1 1 1 1 1 1 1 Value

End Column

Sets the ending column for an image scan. The actual ending column is ((value\*4) + 3) [ or shift the end column value left 2 bits and set the lowers to lsb's to '1' to get the actual end column]. The end column should not be set lower than the start column. Register settings that result in the end column being greater than 191 will select an end column of 191.

![](_page_41_Picture_9.jpeg)

![](_page_42_Picture_0.jpeg)

(97h)

|                | D7 | D6                | D5                         | D4                         | D3                       | D2                       | D1                       | D0                       |
|----------------|----|-------------------|----------------------------|----------------------------|--------------------------|--------------------------|--------------------------|--------------------------|
|                | 0  | Low<br>Resolution | Image<br>Resolution<br>[1] | Image<br>Resolution<br>[0] | Bin.<br>Threshold<br>[3] | Bin.<br>Threshold<br>[2] | Bin.<br>Threshold<br>[1] | Bin.<br>Threshold<br>[0] |
| Reset<br>Value | 0  | 0                 | 0                          | 0                          | 1                        | 0                        | 0                        | 0                        |

Low Resolution

1 The values of 4-pixel clusters are averaged together to provide a 250 ppi image. For example, the values from the first two 16-pixel columns yield are averaged in groups of four to provide 8 averaged pixel values

0 Normal operation. Image data is 4-bits per pixel and packed 2 pixels per byte.

Image Resolution [1:0]

00 Image data is 4-bits per pixel and packed 2 pixels per byte.

01 Image data is 1-bit per pixel and packed 8 pixels per byte.

- 10 Reserved
- 11 Reserved

Bin. Threshold

Sets the binarization threshold value for 1-bit per pixel mode. Pixels with A/D values greater than or equal to the threshold value are sent as a one. [default 08h]

![](_page_42_Picture_13.jpeg)

![](_page_42_Picture_14.jpeg)

![](_page_43_Picture_0.jpeg)

#### Image Data Control (IMAGCTRL)

(98h)

|                | D7 | D6       | D5                         | D4                 | D3                  | D2       | D1                      | D0                       |
|----------------|----|----------|----------------------------|--------------------|---------------------|----------|-------------------------|--------------------------|
|                | 0  | Reserved | Test<br>Register<br>Enable | Registers<br>First | Histo Full<br>Array | Reserved | Histo<br>Data<br>Enable | Image<br>Data<br>Disable |
| Reset<br>Value | 0  | 0        | 1                          | 0                  | 0                   | 0        | 0                       | 0                        |

Test Register Enable

1 Test Registers (Registers with command addresses above 9Fh) are returned with register messages.

0 Test Registers are not returned.

**Registers First** 

- 1 Registers are returned before image data.
- 0 Registers are returned after image data.

Histo Full Array

- 1 The histogram is taken over the full image array.
- 0 The histogram considers only the center 64x16 pixels.

Histogram Data Enable

- 1 The histogram message will be sent when imaging.
- 0 No histogram message is sent when imaging.

Image Data Disable

- 1 The image data message and authentication message are not returned when imaging.
- 0 The image data message and authentication word message are returned.

Note: the histogrammer works on raw pixel data.

![](_page_43_Picture_20.jpeg)

![](_page_44_Picture_0.jpeg)

(99h)

|                | D7 | D6       | D5       | D4       | D3    | D2    | D1    | D0    |
|----------------|----|----------|----------|----------|-------|-------|-------|-------|
|                | 0  | Reserved | Reserved | Reserved | GPIO3 | GPIO2 | GPIO1 | GPIO0 |
| Reset<br>Value | 0  | 0        | 0        | 0        | 0     | 0     | 0     | 0     |

## Notes on GPIO pins:

1. GPIO pins function as Product ID bits when the USB interface is selected. The Product ID bits are captured at the end of power on reset [when RESET\_N transitions from low to high]. When RESET\_N is low, the GPIO signal outputs are forced off. 2. With RESET\_N inactive, GPIO pins have normal functionality.

3. RESET\_N is the only reset state that affects GPIO's and GPIO Output Enables.

4. GPIO pins are affected by power on reset only. Software Master Reset has no effect.

#### GPIO3

- 1 Sets GPIO3 high.
- 0 Sets GPIO3 low

#### GPIO2

- 1 Sets GPIO2 high.
- 0 Sets GPIO2 low.

#### GPIO1

- 1 Sets GPIO1 high.
- 0 Sets GPIO1 low.

#### **GPIO0**

- 1 Sets GPIO0 high.
- 0 Sets GPIO0 low.

![](_page_44_Picture_20.jpeg)

![](_page_45_Picture_0.jpeg)

### (9Ah)

|                | D7 | D6              | D5             | D4                          | D3                | D2                | D1                | D0                |
|----------------|----|-----------------|----------------|-----------------------------|-------------------|-------------------|-------------------|-------------------|
|                | 0  | Power<br>Cycled | Scan<br>Paused | Finger<br>Present-<br>Timer | Scan<br>State [3] | Scan<br>State [2] | Scan<br>State [1] | Scan<br>State [0] |
| Reset<br>Value | 0  | 0               | 0              | 0                           | 0                 | 0                 | 0                 | 0                 |

#### READ ONLY

Power Cycled

High indicates the reset input pin has gone active. Cleared after register is read.

#### Scan Paused

High indicates scan was paused due to input buffer full and unable to accept A/D data. Cleared after the register is read. This bit is also set during histogram messages as the column scan clock is held off to allow the histogram message to complete.

#### Finger Present-Timer

When high, indicates that finger detect circuitry has determined a finger is on the sensor. The result that is shown is a reflection of the delay based finger detect method.

#### Scan State

- 0000 Waiting For Finger.
- 0001 In Finger Settling Delay.
- 0010 In Power Up Delay.
- 0011 Waiting To Start Image Scan.
- 0100 Pre-loading Sub array 0.
- 0101 Setup for row advance.
- 0110 Waiting for row advance.
- 0111 Pre-loading Column 0.
- 1000 Setup for column advance.
- 1001 Waiting for column advance.
- 1010 Waiting for Scan Start.
- 1011 Waiting for Scan End.
- 1100 Waiting for Row Setup.
- 1101 Waiting for one column time (depends on scan rate)
- 1110 Waiting for queued data transmission to be completed
- 1111 Wait for 128 us.

![](_page_46_Picture_0.jpeg)

#### (9Bh)

|                | D7       | D6       | D5       | D4                                       | D3                             | D2                               | D1                               | D0                                |
|----------------|----------|----------|----------|------------------------------------------|--------------------------------|----------------------------------|----------------------------------|-----------------------------------|
|                | Reserved | Reserved | Reserved | Reserved /<br>Finger<br>Present -<br>Nav | Challenge<br>Word<br>[31] / Up | Challenge<br>Word<br>[30] / Down | Challenge<br>Word<br>[29] / Left | Challenge<br>Word<br>[28] / Right |
| Reset<br>Value | 0        | 0        | 0        | 0                                        | 0                              | 0                                | 0                                | 0                                 |

## WRITE

Challenge Word [31:28]

Writing to this register alters bits 31 through 28 of the challenge word.

#### READ

Finger Present-Nav (D4)

- 1 Finger is present image based finger detect during navigation mode.
- 0 No finger present.

Up/Down/Left/Right (D3:D0)

When Navigation mode is selected, the state of these bits indicate which direction (if a direction is indicated by finger location or movement) the sensor believes the finger is indication for cursor navigation. Values of '0' in all register bits indicate the finger is static.

## 6.1.1.25 Challenge Word 2 (CHWORD2)

(9Ch)

|                | D7       | D6                         | D5                         | D4                          | D3                         | D2                          | D1                          | D0                          |
|----------------|----------|----------------------------|----------------------------|-----------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|
|                | Reserved | Challenge<br>Word<br>[27]/ | Challenge<br>Word<br>[26]/ | Challenge<br>Word<br>[25]/] | Challenge<br>Word<br>[24]/ | Challenge<br>Word<br>[23]/] | Challenge<br>Word<br>[22]/] | Challenge<br>Word<br>[21]/] |
| Reset<br>Value | 0        | 0                          | 0                          | 0                           | 0                          | 0                           | 0                           | 0                           |

## **WRITE**

Challenge Word [27:21]

Writing to this register alters bits 32 through 25 of the challenge word.

![](_page_46_Picture_18.jpeg)

![](_page_47_Picture_0.jpeg)

#### (9Dh)

|                | D7       | D6                        | D5                       | D4                       | D3                        | D2                        | D1                        | D0                       |
|----------------|----------|---------------------------|--------------------------|--------------------------|---------------------------|---------------------------|---------------------------|--------------------------|
|                | Reserved | Challenge<br>Word<br>[20] | Challenge<br>Word<br>[19 | Challenge<br>Word<br>[18 | Challenge<br>Word<br>[17] | Challenge<br>Word<br>[16] | Challenge<br>Word<br>[15] | Challenge<br>Word<br>[14 |
| Reset<br>Value | 0        | 0                         | 0                        | 0                        | 0                         | 1                         | 1                         | 0                        |

## WRITE

Challenge Word [20:14]

Writing to this register alters bits 20 through 14 of the challenge word.

## 6.1.1.27 Challenge Word 4 (CHWORD4)

# (9Eh)

|                | D7       | D6                    | D5                    | D4                    | D3                    | D2                   | D1                                 | D0                                 |
|----------------|----------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|------------------------------------|------------------------------------|
|                | Reserved | Challenge<br>Word[13] | Challenge<br>Word[12] | Challenge<br>Word[11] | Challenge<br>Word[10] | Challenge<br>Word[9] | Challenge<br>Word[8]/<br>IO_SEL[1] | Challenge<br>Word[7]/<br>IO_SEL[0] |
| Reset<br>Value | 0        | 0                     | 0                     | 0                     | 0                     | 0                    | 1                                  | 1                                  |

## **WRITE**

Challenge Word [13:7] Writing to this register alters bits 13 through 7 of the challenge word.

# <u>READ</u>

IO\_SEL[1:0] Indicates the selected interface. "11" = USB

## 6.1.1.28 Challenge Word 5 (CHWORD5)

# (9Fh)

![](_page_47_Figure_15.jpeg)

# <u>WRITE</u>

Challenge Word [6:0]

Writing to this register alters bits 7 through 0 of the challenge word.

![](_page_47_Picture_19.jpeg)

![](_page_48_Picture_0.jpeg)

#### (A1h)

|                | D7 | D6                   | D5                         | D4                         | D3       | D2                          | D1                      | D0                      |  |
|----------------|----|----------------------|----------------------------|----------------------------|----------|-----------------------------|-------------------------|-------------------------|--|
|                | 0  | Excit Bias<br>Unlock | Manual<br>Excit<br>Bias[1] | Manual<br>Excit<br>Bias[0] | Reserved | Sense<br>Amp Bias<br>Unlock | Sense<br>Amp<br>Bias[1] | Sense<br>Amp<br>Bias[0] |  |
| Reset<br>Value | 0  | 0                    | 0                          | 0                          | 0        | 0                           | 0                       | 0                       |  |

Excit Bias Unlock

Unlocks the controlling of excitation bias as a function of measure frequency. 1

0 Excitation bias changes depending on measure frequency.

Manual Excit Bias[1:0]

Sets the bias level in the excitation drive circuit.

| 00 | 0.9 mA |
|----|--------|
| 01 | 1.8 mA |
| 10 | 3.6 mA |
| 11 | 7.2 mA |

The table below shows the recommended minimum bias settings based on the highest frequency and drive level being used [assuming a nominal 3.3V power supply].

| Frequency | .325 V | .65 V | 1.3 V | 2.6 V |
|-----------|--------|-------|-------|-------|
| 125 KHz   | 00b    | 00b   | 00b   | 00b   |
| 250 KHz   | 00b    | 00b   | 00b   | 01b   |
| 500 KHz   | 00b    | 00b   | 01b   | 10b   |
| 1 MHz     | 00b    | 01b   | 10b   | 11b   |
| 2 MHz     | 01b    | 10b   | 11b   | 11b   |

Sense Bias Unlock

1 Unlocks the controlling of sense amp bias as a function of measure frequency.

0 Sense amp bias changes depending on measure frequency.

Sense Amp Bias[1:0]

Selects the bias current of the sense amplifiers.

| 00 | 2.5 uA |
|----|--------|
| 01 | 5 uA   |
| 10 | 8 uA   |
| 11 | 10 uA  |

The table below shows the recommended minimum bias settings based on the measure frequency.

| Frequency |     |
|-----------|-----|
| 125 KHz   | 00b |
| 250 KHz   | 01b |
| 500 KHz   | 01b |
| 1 MHz     | 10b |
| 2 MHz     | 11b |

![](_page_49_Picture_0.jpeg)

(A8h)

|                | D7 | D6               | D5       | D4       | D3                     | D2                     | D1                     | D0                     |
|----------------|----|------------------|----------|----------|------------------------|------------------------|------------------------|------------------------|
|                | 0  | Decrease<br>Rdet | Reserved | Reserved | FD<br>Threshold<br>[3] | FD<br>Threshold<br>[2] | FD<br>Threshold<br>[1] | FD<br>Threshold<br>[0] |
| Reset<br>Value | 0  | 0                | 0        | 0        | 0                      | 0                      | 0                      | 1                      |

## Decrease Rdet

- 0 Detect resistor is nominally = 4K ohm.
- 1 Detect resistor is nominally = 1K ohm.

FD Threshold[3:0]

Sets the Timer-based finger-detect delay threshold. Measured delay values above the setting in this register will cause the FINGER PRESENT condition to be true when using delay based finger detect.

![](_page_49_Picture_9.jpeg)

![](_page_50_Picture_0.jpeg)

## (ACh)

|                | D7 | D6       | D5       | D4       | D3       | D2       | D1       | D0                   |
|----------------|----|----------|----------|----------|----------|----------|----------|----------------------|
|                | 0  | Reserved | Reserved | Reserved | Reserved | Reserved | Reserved | Single Reg<br>Enable |
| Reset<br>Value | 0  | 0        | 1        | 0        | 0        | 0        | 0        | 0                    |

Single Reg. Enable

1 The register read command will produce only 2 bytes, the register address header for the register selected in ADh, and the register contents for that address.

0 Register read produces full register set at selected interface.

![](_page_50_Picture_6.jpeg)

![](_page_51_Picture_0.jpeg)

# (ADh)

|                | D7 | D6                      | D5                      | D4                      | D3                      | D2                      | D1                      | D0                      |
|----------------|----|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|                | 0  | Single<br>Reg ID<br>[6] | Single<br>Reg ID<br>[5] | Single<br>Reg ID<br>[4] | Single<br>Reg ID<br>[3] | Single<br>Reg ID<br>[2] | Single<br>Reg ID<br>[1] | Single<br>Reg ID<br>[0] |
| Reset<br>Value | 0  | 0                       | 0                       | 0                       | 0                       | 0                       | 0                       | 0                       |

When reading single register contents is enabled (REG ACh), this register identifies which register address will be read.

![](_page_51_Picture_4.jpeg)

![](_page_52_Picture_0.jpeg)

## (AEh)

|                | D7 | D6       | D5       | D4       | D3       | D2        | D1        | D0        |
|----------------|----|----------|----------|----------|----------|-----------|-----------|-----------|
|                | 0  | Reserved | Reserved | Reserved | Reserved | FDRV X[9] | FDRV X[8] | FDRV X[7] |
| Reset<br>Value | 0  | 0        | 0        | 0        | 0        | 0         | 0         | 0         |

FDRV X[9:7] READ ONLY If Register 0x83-D6 = 0 FCRV X = FDRV\_DELAY[9:7]. If Register 0x83-D6 = 1 FCRV X = FDRV\_REFERENCE[9:7]

# 6.1.1.34 FDRV X LO (FDRVXLO)

## (AFh)

|                     | D7 | D6        | D5        | D4        | D3        | D2        | D1        | D0        |
|---------------------|----|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|                     | 0  | FDRV X[6] | FDRV X[5] | FDRV X[4] | FDRV X[3] | FDRV X[2] | FDRV X[1] | FDRV X[0] |
| l<br>Reset<br>Value | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         |

FDRV X[6:0] READ ONLY If Register 0x83-D6 = 0 FCRV X = FDRV\_DELAY[6:0]. If Register 0x83-D6 = 1 FCRV X = FDRV\_REFERENCE[6:0]

![](_page_53_Picture_0.jpeg)

## (B0h)

|                | D7 | D6       | D5       | D4                 | D3       | D2                  | D1                  | D0                  |
|----------------|----|----------|----------|--------------------|----------|---------------------|---------------------|---------------------|
|                | 0  | Reserved | Reserved | Watchdog<br>Enable | Reserved | Watchdog<br>Time[2] | Watchdog<br>Time[1] | Watchdog<br>Time[0] |
| Reset<br>Value | 0  | 0        | 0        | 0                  | 0        | 0                   | 0                   | 0                   |

Watchdog Enable

1 Enables operation of Watchdog timer, which can cause a USB disconnect if the time set in [D2:D0] expires without USB transactions to the sensor.

# 0 Normal operation.

Watchdog Timer[2:0] – Selects timeout value for watchdog timer. Required settings for system use are 2 seconds or above

| 000 | 15 ms     |
|-----|-----------|
| 001 | 100ms     |
| 010 | 500ms     |
| 011 | 1 second  |
| 100 | 2 seconds |
| 101 | 3 seconds |
| 110 | 4 seconds |
| 111 | 5 seconds |

![](_page_53_Picture_9.jpeg)

![](_page_54_Picture_0.jpeg)

JuthenTec, Inc.

## Misc. Image Control/GPIO Disable(MISCICTRL) (B3h)

|                | D7 | D6       | D5       | D4       | D3                 | D2                 | D1                 | D0                |
|----------------|----|----------|----------|----------|--------------------|--------------------|--------------------|-------------------|
|                | 0  | Reserved | Reserved | Reserved | GPO<br>disable [3] | GPO<br>disable [2] | GPO<br>disable [1] | GPO<br>disable[0] |
| Reset<br>Value | 0  | 0        | 0        | 0        | 1                  | 1                  | 1                  | 1                 |

## GPIO3 Disable

- 1 GPIO3 output is disabled, pin may be used as an input.
- 0 GPIO3 pin is an output.

#### GPIO2 Disable

- 1 GPIO2 output is disabled, pin may be used as an input.
- 0 GPIO2 pin is an output.

#### GPIO1 Disable

- 1 GPIO1 output is disabled, pin may be used as an input.
- 0 GPIO1 pin is an output.

## GPIO0 Disable

- 1 GPIO0 output is disabled, pin may be used as an input.
- 0 GPIO0 pin is an output.

![](_page_54_Picture_16.jpeg)

![](_page_54_Picture_17.jpeg)

![](_page_55_Picture_0.jpeg)

# SOF Timestamp/FreeRun[13:7] (SOFTIMEHIGH) (BAh)

|                | D7 | D6                       | D5                       | D4                       | D3                       | D2                      | D1                      | D0                      |
|----------------|----|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------|-------------------------|-------------------------|
|                | 0  | SOF<br>Timestamp<br>[13] | SOF<br>Timestamp<br>[12] | SOF<br>Timestamp<br>[11] | SOF<br>Timestamp<br>[10] | SOF<br>Timestamp<br>[9] | SOF<br>Timestamp<br>[8] | SOF<br>Timestamp<br>[7] |
| Reset<br>Value | 0  | 0                        | 0                        | 0                        | 0                        | 0                       | 0                       | 0                       |

SOF Timestamp/Free Run[13:7] READ ONLY

This register indicates the upper 7 bits of the start of imaging timestamp. When Register 0x82-D0 is set, the counter free runs and these bits are updated at the time of the register read.

## 6.1.1.38 SOF Timestamp/FreeRun[6:0] (SOFTIMELOW) (BBh)

|                | D7 | D6                      | D5                      | D4                      | D3                      | D2                      | D1                      | D0                      |
|----------------|----|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|                | 0  | SOF<br>Timestamp<br>[6] | SOF<br>Timestamp<br>[5] | SOF<br>Timestamp<br>[4] | SOF<br>Timestamp<br>[3] | SOF<br>Timestamp<br>[2] | SOF<br>Timestamp<br>[1] | SOF<br>Timestamp<br>[0] |
| Reset<br>Value | 0  | 0                       | 0                       | 0                       | 0                       | 0                       | 0                       | 0                       |

SOF Timestamp/FreeRun[6:0] READ ONLY

This register indicates the lower 7 bits of the start of imaging timestamp. When Register 0x82-D0 is set, the counter free runs and these bits are updated at the time of the register read.

## 6.1.1.39 EOF Timestamp[13:7] (EOFTIMEHIGH)

(BCh)

|                | D7 | D6                       | D5                       | D4                       | D3                       | D2                      | D1                      | D0                      |   |
|----------------|----|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------|-------------------------|-------------------------|---|
|                | 0  | EOF<br>Timestamp<br>[13] | EOF<br>Timestamp<br>[12] | EOF<br>Timestamp<br>[11] | EOF<br>Timestamp<br>[10] | EOF<br>Timestamp<br>[9] | EOF<br>Timestamp<br>[8] | EOF<br>Timestamp<br>[7] |   |
| Reset<br>Value | 0  | 0                        | 0                        | 0                        | 0                        | 0                       | 0                       | 0                       | - |

EOF Timestamp[13:7] READ ONLY

This register indicates the upper 7 bits of the end of imaging timestamp. This is a free running counter.

![](_page_55_Picture_14.jpeg)

![](_page_56_Picture_0.jpeg)

(BDh)

|                | D7 | D6                      | D5                      | D4                      | D3                      | D2                      | D1                      | D0                      |
|----------------|----|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
|                | 0  | EOF<br>Timestamp<br>[6] | EOF<br>Timestamp<br>[5] | EOF<br>Timestamp<br>[4] | EOF<br>Timestamp<br>[3] | EOF<br>Timestamp<br>[2] | EOF<br>Timestamp<br>[1] | EOF<br>Timestamp<br>[0] |
| Reset<br>Value | 0  | 0                       | 0                       | 0                       | 0                       | 0                       | 0                       | 0                       |

EOF Timestamp[6:0] READ ONLY

This register indicates the lower 7 bits of the end of imaging timestamp. This is a free running counter.

![](_page_56_Picture_5.jpeg)

![](_page_57_Picture_0.jpeg)

# 7.1 Overview

The sensor communicates with the host via data packets. A one-byte header that identifies the message precedes each data packet type. Note that since the pixel data formats use all 8-bits per byte, the header bytes are not unique in the data stream. Software can use the header bytes to verify that it is synchronized with the data stream. They cannot be used as a mechanism to synchronize with the data. If software gets out of synch with the data, it should disable image scanning and issue a scan reset. This will cause the data stream to stop. The following table shows the header byte definitions for each message type.

| Header<br>Byte | Definition                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 80h – BEh      | Register headers                                                                                                                                                                                                                                                                                                                                                                                            |
| BFh – DDh      | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                   |
| DEh            | Precedes 32 byte histogram message.                                                                                                                                                                                                                                                                                                                                                                         |
| DFh            | Precedes eight byte authentication value.                                                                                                                                                                                                                                                                                                                                                                   |
| E0h            | Precedes 500 ppi array data message in<br>gray scale. The array message is 192<br>columns x 16 pixels per column x $\frac{1}{2}$ byte<br>per pixel = 1536 bytes. In 250 ppi mode,<br>the array message is 96 columns x 8<br>pixels per column x $\frac{1}{2}$ byte per pixel =<br>384 bytes. In Extended Precision 250<br>ppi mode, the array message is 96<br>columns x 8 bytes per column = 768<br>bytes. |
| E1h-EFh        | Reserved                                                                                                                                                                                                                                                                                                                                                                                                    |
| F0h            | Precedes array data message in binary<br>mode. The array message is 192<br>columns x 16 pixels per column x 1/8<br>byte per pixel = 384 bytes. In 250 ppi<br>Mode, the array message is 96 columns<br>x 8 pixels per column x 1/8 byte per pixel<br>= 96 bytes.                                                                                                                                             |
| F1h –FFh       | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                   |

| Table 7-1 | Command | <b>B</b> vte | Definition |
|-----------|---------|--------------|------------|
|           | Commanu | Dyte         | Deminion   |

![](_page_57_Picture_5.jpeg)

![](_page_58_Picture_0.jpeg)

# 7.1.1 Registers Message Format

When a request to read registers is received (initiated by setting the Read Registers bit in Register 81h-D1, all of the register values are returned preceded by the header for that register.

Registers are written to by writing the register ID followed by the data byte.

# 7.1.2 Image Data Format – Grey Scale 500 ppi

| Byte | Data (D7 – D0)                                     |
|------|----------------------------------------------------|
| 1    | Header (E0h)                                       |
| 2    | Column 1 pixel 2[3:0], Column 1 pixel 1[3:0]       |
| 3    | Column 1 pixel 4[3:0], Column 1 pixel 3[3:0]       |
| 4    | Column 1 pixel 6[3:0], Column 1 pixel 5[3:0]       |
| 5    | Column 1 pixel 8[3:0], Column 1 pixel 7[3:0]       |
| 6    | Column 1 pixel 10[3:0], Column 1 pixel 9[3:0]      |
| 7    | Column 1 pixel 12[3:0], Column 1 pixel 11[3:0]     |
| 8    | Column 1 pixel 14[3:0], Column 1 pixel 13[3:0]     |
| 9    | Column 1 pixel 16[3:0], Column 1 pixel 15[3:0]     |
| 10   | Column 2 pixel 2[3:0], Column 1 pixel 1[3:0]       |
|      |                                                    |
| 1537 | Column 192 pixel 16[3:0], Column 192 pixel 15[3:0] |

Table 7-2 shows the image data format in this mode.

## Table 7-2 Gray Scale Message Format

The 0xE0h header for the row is sent first, followed by each column vector sent as eight bytes. The 64-bit pixel data also updates the authentication word. After all data for the selected number of rows is sent, the authentication word is sent preceded by the header byte for the authentication message. The authentication data is sent lower byte first. The register values are then returned, with each register preceded by the command byte for the register. The register values are the ones that were in effect during the image.

![](_page_58_Picture_9.jpeg)

![](_page_59_Picture_0.jpeg)

Table 7-3 shows the image data format for this mode.

| Byte | Data (D7 – D0)                                                           |
|------|--------------------------------------------------------------------------|
| 1    | Header (E0h)                                                             |
| 2    | Col 1/Col 2 pixel group 1 [3:0], Col 1/Col 2 pixel group 2 [3:0]         |
| 3    | Col 1/Col 2 pixel group 3 [3:0], Col 1/Col 2 pixel group 4 [3:0]         |
| 4    | Col 1/Col 2 pixel group 5 [3:0], Col 1/Col 2 pixel group 6 [3:0]         |
| 5    | Col 1/Col 2 pixel group 7 [3:0], Col 1/Col 2 pixel group 8 [3:0]         |
| 6    | Col 3/Col 4 pixel group 1 [3:0], Col 3/Col 4 pixel group 2 [3:0]         |
|      |                                                                          |
| 385  | Col 191/Col 192 pixel group 7 [3:0], Col 191/Col 192 pixel group 8 [3:0] |

# Table 7-34 Bit 250 ppi Gray Scale Message Format

The header for the row is sent first, followed by each 2-column vector sent as eight bytes. The difference between this mode and 500 ppi mode is that four adjacent pixels are summed together and returned as a single 4bit value. The 64-bit pixel data updates the authentication word in the same format as for normal data. After all data for the selected number of columns is sent, the authentication word is sent preceded by the header byte for the authentication message. The authentication data is sent lower byte first. The register values are then returned, with each register preceded by the command byte for the register. The register values are the ones that were in effect during the image.

![](_page_59_Picture_5.jpeg)

![](_page_60_Picture_0.jpeg)

The packed monochrome data format sends only a one bit value per pixel but packs the data so all eight bits are used. Table 7-4 shows the data format in this mode.

| Byte | Data (D7 – D0)            |
|------|---------------------------|
| 1    | Header (F0h)              |
| 2    | Column 1 pixels 8-1       |
| 3    | Column 1 pixels 16-9      |
| 4    | Column 2 pixels 8-1       |
| 5    | Column 2 pixels 16-9      |
|      |                           |
| 385  | Column 192 pixels<br>16-9 |

 Table 7-4
 Monochrome Packed Message Format

The header for the row is sent first, followed by each column sent as two bytes. The 64-bit value from four columns updates the authentication word in the same manner as for normal data. After all data for the selected number of rows is sent, the authentication word and register data are sent as in normal mode.

![](_page_60_Picture_5.jpeg)

![](_page_61_Picture_0.jpeg)

When the histogram message is enabled, it is sent once per image. When sent once per image, it will be sent after the image data and before the authentication word. The histogram message is preceded by a header byte (0xDE). The header is followed by the counts for each of the bins representing possible pixel values. Bin 0 (the number of pixels whose value is 0) is sent first as two bytes. The first byte has the lower seven bits and the second byte has the upper seven bits. This is followed by the counts for the remaining bins

| Byte | Data (D6 – D0) |
|------|----------------|
| 1    | Header (0xDE)  |
| 2    | Bin0[6:0]      |
| 3    | Bin0[13:7]     |
| 4    | Bin1[6:0]      |
| 5    | Bin1[13:7]     |
| 6    | Bin2[6:0]      |
|      |                |
| 32   | Bin15[6:0]     |
| 33   | Bin15[13:7]    |

 Table 7-5
 Histogram Message Format

![](_page_61_Picture_4.jpeg)

![](_page_62_Picture_0.jpeg)

# 7.1.6 Authentication Word Message Format

The authentication word is sent after an image is complete. The authentication word message is preceded by a header byte (0xDF). The authentication word is used to validate that the transaction is authentic (i.e. that the image data isn't being provided from some storage device containing a valid fingerprint image).

| Byte | Data (D6 – D0)              |
|------|-----------------------------|
| 1    | Header (0xDF)               |
| 2    | Authentication Word [7:0]   |
| 3    | Authentication Word [15:8]  |
| 4    | Authentication Word [23:16] |
| 5    | Authentication Word [31:24] |
| 6    | Authentication Word [39:32] |
| 7    | Authentication Word [47:40] |
| 8    | Authentication Word [55:48] |
| 9    | Authentication Word [63:56] |

Table 7-6 Authentication Word Message Format

![](_page_62_Picture_5.jpeg)

![](_page_63_Picture_0.jpeg)

# AES2501A - I - PP - CC - DDEE

 $\frac{I = Temperature Range}{C = Commercial temperature range = 0C to + 70C}$ 

 $\frac{PP = Packaging Options}{GA = 48 BGA with std. Leaded Balls}$ GF = 48 BGA with lead free Balls

<u>CC = Carrier Options</u> CA = Plastic Carrier Trays 240 sensors per tray TR = Tape & Reel w/ 3500 sensors per reel

<u>DD = Drive Ring Options:</u> GO = Gold NI = Nickel

EE = Options0A = Silicon revision code in 2501A series\*

\* Contact AuthenTec Sales for current revision code.

Example: AES2501A with Gold ring, Lead-free solder balls, shipped as tape reels: AES2501A-C-GF-TR-GO0A

![](_page_63_Picture_9.jpeg)

![](_page_64_Picture_0.jpeg)

![](_page_64_Figure_1.jpeg)

# Package Backside Laser Part Marking

Date Code Legend:

Ink Color: Laser Marking <u>K</u> = Country Code (U=USA, K=Korea, T=Taiwan, S= Singapore, C= China) <u>124</u> = Mold Week & Year (example shown: week 12, year 2004) <u>A</u> = Product Designator : E: ES2501A Pb-Free; R: AES2501A with Pb <u>456</u> = Wafer Lot I.D. from manufacturer

# 9. Revision History

| Version  | Date        | Person | Reason                                              |
|----------|-------------|--------|-----------------------------------------------------|
| Released | 12/29/03    | Lee    | Release Date of Public Specification                |
|          |             |        |                                                     |
|          |             |        |                                                     |
| 1.1      | 30 March 04 | Lee    | Added power supply ripple spec.                     |
| 1.2      | 30 May 04   | Lee    | Formatting Fixes                                    |
| 1.3      | 10 Aug 04   | Lee    | Added part numbering and backside laser mark info   |
| 1.0      | 28 Oct 04   | Lee    | Updates for 2501A – A10 Pin change to PLL_FILTER    |
|          |             |        | Pin change necessitates new part number.            |
|          |             |        | PID Update, Pin 1 Marking data, Register B0 change, |
| 1.1      | 17 Nov 04   | Lee    | Updated Reset Register Values                       |

![](_page_64_Picture_7.jpeg)