Fingerprint algorithms
Algorithmes de reconnaissance d'empreintes digitales

Comparison methods
Méthodes de comparaison

If manual comparison by a fingerprint expert is always done to say if two fingerprint images are coming from the same finger in critical cases, automated methods are widely used now.

Si un expert en empreintes digitales effectue toujours une comparaison manuelle pour dire si deux images d'empreintes proviennent du même doigt dans les cas critiques, les méthodes automatiques sont à présent partout utilisées.


Many different algorithm types exist: / De nombreuses techniques existent:


Fingerprint categories general direction

Minutiae

Most algorithms are using minutiae, the specific points like ridges ending, bifurcation... Only the position and direction of these features are stored in the signature for further comparison.

fingerprint minutiae Minutiae definition

La plupart des algorithmes utilisent les minuties, ces points spécifiques comme les fin de lignes, les embranchements... Seules les positions et directions de ces points sont stockées dans la signature de l'empreinte pour les futures comparaisons.

Some algorithms counts the number of ridges between particular points, generally the minutiae, instead of the distances computed from the position.

Ridge count

Certains algorithmes comptent le nombre de lignes entre deux points, généralement des minuties, au lieu des distances calculées à partir des positions.

Pattern matching

Pattern matching algorithms are using the general shape of the ridges. The fingerprint is divided in small sectors, and the ridge direction, phase and pitch are extracted and stored.

Les algorithmes basés sur la corrélation utilisent la forme générale des lignes. L'empreinte est divisée en petits secteurs où la direction, la phase et le pas des lignes sont extraits puis stockés.


Very often, algorithms are using a combination of all theses techniques.
Il est fréquent que les algorithmes combinent ces diverses techniques.

Matching

Matching of a "ten print card" fingerprint with a latent fingerprint using minutiae.

Accord entre une image d'empreinte provenant d'un enregistrement sur fiche (fiche de police où les 10 doigts encrées sont imprimés) et une empreinte latente, utilisant les minuties.


ten print card matching latent print

Not using minutiae nor pores

[2024 Jan] Unveiling intra-person fingerprint similarity via deep contrastive learning

Up to now, fingerprint recognition were using features classified into 3 levels :

  1. general shape (whorl, loop...)
  2. minutiae (ending, bifurcation...)
  3. pores

These features are specific to one fingerprint, even from the same hand.

A collaboration between Hod Lipson’s Creative Machines lab at Columbia Engineering and Wenyao Xu’s Embedded Sensors and Computing lab at University at Buffalo, SUNY, discovered, using deep learning, that some other features are specific to one person, and moreover, are the same between the fingers of the same person. “Instead, it was using something else, related to the angles and curvatures of the swirls and loops in the center of the fingerprint.”

This is not yet perfect, but this will help to match someone, even if the target fingerprint is not in the database !

Matching probability

What is the probability of two fingerprints to match ?
Quelle est la probabilité que deux empreintes soient identiques ?

"On the individuality of fingerprints" (Pankanti/IBM) estimated to 6.10-8 the probability for 12 minutiae matching among 36 to match, but lots of estimations exist...
L'article "On the individuality of fingerprints" (Pankanti/IBM) estime à 6.10-8 la probabilité que 12 minuties parmi 36 correspondent, mais de nombreuses estimations existent...

In the following array, M & R defines "regions", N minutiae.
Dans le tabeau suivant, M & R sont les "régions", et N le nombre de minuties.


matching probabilities

Sensor + algorithm integration

Integrating the recognition algorithm with the sensor has started in 1999.

Very small sensors

The previous algorithms just cannot work with very small sensors, because there is not enough minutiae information. As a result, some companies are developping new algorithms -well, not that new because it is based on simple pattern matching (what else?!?).

They are announcing sometimes very good numbers, but you just cannot get the source information to get these numbers and have to trust them.

Here are the main announcements:

Hey, guys, even with a FAR = 1/10 000, what you are saying is that with two independant finger areas as small as 4x4mm, you can recognize someone with a FAR = 1/100 000 000, much more better than all those governmental companies working on that topic for decades? Maybe the actual sensors are giving much more better images (something hard to believe with 300 microns thickness of glass above the sensor), and that you are not comparing your images with latent prints, but well, be humble (and prove your numbers...)

Within this fierce competition, a company is going the other way, demonstrating that we need large sensors:

But well, for sure, if you are using minutia-based algorithms, then large sensors are a must. I demonstrated that years ago with Cogent :

which does not mean that algorithms using 3rd level features (for instance pores) do not work with a smaller area.

Evaluation

FAR & FRR evaluation is difficult, and you must show the origin of the numbers so that we can understand and compare. It is very easy to trick the databases, this is pretty well explained in this paper :

But in fact, this is a little bit more complicated, because you also have to explain the enrollment strategy, you can also read my accuracy page to get some more info to make your mind.

Police & fingerprints
La police et les empreintes digitales

The FBI IAFIS homepage

The FBI latent print homepage

Accuracy and reliability of forensic latent fingerprint decisions

This paper reports on the first large-scale study of the accuracy and reliability of latent print examiners’ decisions, in which 169 latent print examiners each compared approximately 100 pairs of latent and exemplar fingerprints from a pool of 744 pairs.

So it will tell you how accurate is a "human" algorithm...

Fingerprint algorithms

See also the fingerprint sensors as some sensor manufacturers are including the authentication software in their offer.

Voir aussi les capteurs d'empreintes car certains fabriquants de capteurs incluent leur soft d'authentification dans leur offre.


Take care: the last update is dated around 2006.


  1. 123 ID (USA) [CVT]
  2. Acter (Switzerland) [acterBIOLIB]
  3. ActivCard (Canada)
  4. Aldebaran Systems (USA) [participated to FVC2002]
  5. Antheus Technology (Brasil, USA) [Agora]
  6. APRO Technology (Japan)
  7. AST (Spain) [ASTAS]
  8. Astro Datensysteme (Germany) [BioTouch]
  9. Av@lon Systems / Semantic system (Switzerland) [Ultramatch] [participated to FpEVT 2003, NIST]
  10. Beijing BaiXinTong Electronic Tech (China) [participated to FVC2006]
  11. Beijing Smackbio Technology (China) [Smackfinger] [participated to FVC2006]
  12. Beijing HanWang Technology (China) [participated to FVC2004]
  13. Bergdata (CDVI) (Germany, France) [bdfis]
  14. BeyondLSI (Japan)
  15. BioCert (USA?) [BioCert]
  16. BIO-Key (USA) [VST]
  17. Biolink (USA) [U-Match]
  18. Biometrix (Austria) [BioCheck]
  19. Bionopoly (USA)
  20. Bioscrypt (Canada, USA) [Bioscrypt Core, V-Pass...]
  21. Bromba (Germany) (spin-off from Siemens, end 2003)
  22. CASIA Institute of Automation, Chinese Academy of Sciences (China) [participated to FVC2004]
  23. Casio (Japan) [VeriPat]
  24. CBA-Japan (Japan) [FCHIP2]
  25. The Chinese University of Hong-Kong (Hong-Kong) [for smartcard (2004)]
  26. Cogent (USA) [Bioswipe] is 3M (2010)
  27. ComnetiX (Canada)
  28. Cottonwood (CCS) (seems no more available 03/2004)
  29. Count Me In (USA) [LightningID] (Digital Persona?)
  30. CrossMatch (USA) [ID 500...]
  31. Daimin (Korea)
  32. Dalian University of Technology (China) [FVC2006]
  33. Datamicro (Russia) [participated to FVC2002, FVC2004]
  34. DDS Digital Development Systems (Japan) [UBF]
  35. Dermalog (Germany)
  36. Beijing Fingerpass / labs: Digital Fingerpass Corporation (China)
  37. DTK Digital Tech Korea
  38. Ekey (Austria) [TOCAxxx]
  39. Fidelica (USA) 27 feb 2004: announced the availability of the FBA-4001 matching algorithm.
  40. Fingerpin AG (Switzerland) (May 2004: access problem to website)
  41. FIST (Korea) [Finguard]
  42. Fujitsu (Japan)
  43. Futronic Technology (China) [participated to FVC2004]
  44. Genologic (Germany)
  45. Gevarius (Russia) [participated to FVC2004]
  46. Golden Finger Systems (USA?) [participated to FpEVT 2003, NIST]
  47. Griaule (Brasil) [Pequi]
  48. GuangZhou Comet Technology Development (China) [participated to FVC2006]
  49. Hyundai (Korea) [FDI(fingerPrint Digital Identity)]
  50. HZMS Biometrics (China) [participated to FVC2002]
  51. ID Solutions (USA & Russia)
  52. ID3 semiconductors (France) [Biothentic, Certis]
  53. Idencom (Germany) [Biokey]
  54. Ident (Germany)
  55. Identalink (Germany) [BioPassport]
  56. Identix (USA) (acquired Identicator 1999, merge with Visionics 2002)
  57. Beijing IDWorld (China)
  58. iFingerSys (Austria) linked to Joanneum Research
  59. Ikendi (Germany) [IKxxx]
  60. Init(Brasil) [FBIC]
  61. ImageWare Systems (USA) [IWS biometric engine]
  62. Innovatrics (France/Slovakia) [Iengine] created by Jan Lunter (France) [participated to FVC2004]
  63. Integral Ltd (Russia) [participated to FVC2004] link to TestTech
  64. ISL (UK) [SentryNET]
  65. Jaypeetex (India)
  66. JM Tronics (Malaysia)
  67. Labcal (Canada) [.smartprint]
  68. LGE Institute of Technology (Korea) [FVC2006]
  69. Mantra Technologies (India) [FVS engine]
  70. Miaxis (China) [eBioxxxx]
  71. Morphosoric (Germany)
  72. Motorola (USA) (acquired Printrak 2000).
  73. NEC Solutions America (USA)
  74. Neurodynamics (UK) [Deixis]
  75. Neurotechnology (Lithuania) (formerly Neurotechnologija / 2008) [VeriFinger]
  76. Nexign (Korea)
  77. NitGen (Korea)
  78. NIST (USA)
  79. Nyoun (Korea) [participated to FVC2004]
  80. ODI (USA)
  81. Optel (Poland)
  82. Papillon Systems (Russia)
  83. PrintScan / Computer Experts [WinFing]
  84. Qingsong (China)
  85. Raytheon (USA)
  86. Sagem Morpho (France)
  87. SecuIt (Korea) [Secuxxx]
  88. Sense Holdings (USA) [BioCode]
  89. Shanghai Tongji / Smartech (USA, China)
  90. Shanghai Fingertech Information (China)
  91. Siemens (Austria)
  92. Silex (Japan)
  93. Sonda (Russia)
  94. Startek (Taiwan)
  95. Suprema (Korea) [Unifinger]
  96. Technoimagia (Japan) [FP-xxx]
  97. TeKey Research Group (Israel)
  98. Thales Security Systems (France)
  99. The Phoenix Group (USA) [Afix tracker]
  100. Testech inc. (Korea) [Bio-I]
  101. Shanghai Tongji Smartech (China) [Corn Technology]
  102. Ultrascan (USA)
  103. Unicomp technology (China) [FVC2006]
  104. Veridt (formerly Biocentric Solutions, May 2004) (USA) [BioHub, BioSentry]
  105. Warwick Warp (UK) [WarpFinger]
  106. Xi'an Qingsong Tech Co (China) [Timeasy, Touchsmart]
  107. Zaklad Techniki Mikroprocesorowej (Poland) [participated to FVC2004]
  108. Zefyr (France)
  109. ZK software (China) [ZK finger]

Independent developers:
Développeurs indépendants:

  1. Andrei Nikiforov (now at Bio-key?)
  2. Ariel Unanue (Argentina) [BiofingerAI] [participated to FVC2004]
  3. Christian Pötzsch (Germany 2001) Fingerprint Detection System Auf der Basis von Neuronalen Netzen
  4. Deng Guoquiang (China) [participated to FVC2004, FVC2006]
  5. Ilya Belogin (Russia) [participated to FVC2006]
  6. Ilya Poshivaylo (Russia) [participated to FVC2006]
  7. Ji Hui (China) [participated to FVC2004, FVC2006]
  8. Li Lijuan (China) [participated to FVC2004]
  9. Song Yong (China) [participated to FVC2006]
  10. Wei Wang (China) [participated to FVC2006]
  11. Xu Zengbo (China) [participated to FVC2006]
  12. Yang Qianbang (China) [participated to FVC2006]
  13. Yasar TUTUK & Semsi Cihan Yucel (Turquie) [Inspector]