Mechanical (pressure) fingerprint sensing
Capture mécanique d'empreintes digitales

Mechanical fingerprint sensing is very often pressure sensing. Pressure is a force applied on a surface, so a mechanical constraint. We expect to see a difference where the ridges apply with the valleys.

pressure fingerprint sensor

This is one of the oldest ideas, because when you put your finger on something, you apply a pressure. Piezo-electric material has existed for years, but unfortunately, the sensitivity is very low. Moreover, when you add a protective coating, the resulting image is blurred because the relief of the fingerprint is smoothed.


These problems have been solved, and now some devices using pressure sensing are available.

C'est une des plus anciennes idées, car lorsque vous posez votre doigt, vous appliquez une pression. Les matériaux piézo-électriques sont connus depuis longtemps, mais malheureusement leur sensibilité est très faible. De plus, lorsque vous ajoutez une protection surfacique, l'image résultante est floue car le relief de l'empreinte est atténué.
Ces problèmes ont été résolus, et maintenant quelques dispositifs utilisant la pression sont disponibles.

Several solutions, depending on the material, have been proposed:

Conductive membrane on silicon
Membrane conductrice sur silicium

(1994 Jul) Opsis (a french company) offered a device using a conductive membrane deposited on a CMOS chip.
Opsis (France) a offert un dispositif utilisant une membrane conductrice déposée sur une puce CMOS (juillet 1994).

Conductive membrane on TFT
Membrane conductrice sur TFT

Alps Electric, pressure Alps Electric, pressure prototype

Tactile MEMS

Micro electro-mechanical devices allow engineers to make extremely tiny silicon switches. When a ridge touches a switch, it closes. But the coating remains a significant problem, and moreover, a binary image is the result, leading to minimal information. No further development has been done with this technique beyond the laboratory.

Les dispositifs micro-usinés permettent la réalisation de très petits interrupteurs. Lorsque qu'une crête touche un interrupteur, elle le ferme. Mais la protection surfacique reste un problème délicat, et de plus on obtient une simple image binaire, contenant peu d'information. Il n'existe pas encore de développement ayant dépassé le stade du laboratoire.


NTT

NTT

Michigan University

Michigan university

TIMA

Tima Tima tactile chip

CEA-LETI

Leti

LighTuning

LighTuning MEMS

Universiti Kebangsaan Malaysia

Universiti Kebangsaan Malaysia / Mitra Damghanian, Burhanuddin Yeop Majlis

IMEN

National TsingHua University

National TsingHua University, Hsinchu, Taiwan:


Fidelica >> Lenovo

Micro-electromechanical (MEMS, NEMS) + electrostatic reading


BIT Beijing Institute of Technology 北京理工大学

Piezoelectric nanowires


Georgia Institute of Technology


CEA-LETI

Photonic crystals

(2006) University of Toronto
"You can elastically deform these crystals and produce different colours," says lead author André Arsenault, a PhD candidate in the laboratory of Geoffrey Ozin, a University Professor in the Department of Chemistry and a Canada Research Chair in materials chemistry.
Photonic crystals are a relatively new development in the scientific quest to control light. Ozin's lab first created photonic crystals in 2002, using spherical particles of silica mere micrometers in diameter that self-assemble into neat layers, creating what's known as an opal. After filling the space between the spheres with silicon, they used acid etching to remove the silica balls. This left an ordered sponge of air bubbles in silicon known as an inverse opal. This photonic crystal material, the first of its kind, did indeed trap light. These photonic crystals can produce color based on how an electromagnetic wave interacts with the structure -- meaning that it could be tuned to produce any color.
In the new study, the team injected an elastic compound between the spheres, which were then etched away, leaving an orderly and compressible elastic foam that can be transferred onto virtually any surface, such as glass, metal or plastic. The material changes color based on how far the spheres are separated.